2. Aphasia if the left hemisphere is affected (rarely if the right hemisphere is affected)
3. Contralateral homonymous hemianopia (damage to the optic radiation)
4. Anosognosia if the right hemisphere is affected (rarely if the left hemisphere is affected)

POSTERIOR CEREBRAL ARTERY OCCLUSION

Occlusion of the posterior cerebral artery may produce the following signs and symptoms, but the clinical picture will vary according to the site of the occlusion and the availability of collateral anastomoses:

1. Contralateral homonymous hemianopia with some degree of macular sparing (damage to the calcarine cortex, macular sparing due to the occipital pole receiving collateral blood supply from the middle cerebral artery)
2. Visual agnosia (ischemia of the left occipital lobe)
3. Impairment of memory (possible damage to the medial aspect of the temporal lobe)

INTERNAL CAROTID ARTERY OCCLUSION

Occlusion of the internal carotid artery can occur without causing symptoms or signs or can cause massive cerebral ischemia depending on the degree of collateral anastomoses.

1. The symptoms and signs are those of middle cerebral artery occlusion, including contralateral hemiparesis and hemianesthesia.
2. Partial or complete loss of sight occurs on the same side, but permanent loss is rare (emboli dislodged from the internal carotid artery reach the retina through the ophthalmic artery).

VERTEBROBASILAR ARTERY OCCLUSION

The vertebral and basilar arteries supply all the parts of the central nervous system in the posterior cranial fossa, and through the posterior cerebral arteries, they supply the visual cortex on both sides. The clinical signs and symptoms are extremely varied and may include the following:

1. Ipsilateral pain and temperature sensory loss of the face and contralateral pain and temperature sensory loss of the body
2. Attacks of hemianopia or complete cortical blindness
3. Ipsilateral loss of the gag reflex, dysphagia, and hoarseness as the result of lesions of the nuclei of the glossopharyngeal and vagus nerves
4. Vertigo, nystagmus, nausea, and vomiting
5. Ipsilateral Horner syndrome
6. Ipsilateral ataxia and other cerebellar signs
7. Unilateral or bilateral hemiparesis
8. Coma

Cerebral Blood Flow Impairment

Impairment of cerebral blood flow can be caused by a large number of conditions, and the more important conditions can be considered under the following headings:
(1) diseases that produce alteration in blood pressure,
(2) diseases of arterial walls, and (3) diseases that result in blockage of the arterial lumen.

POSTURAL HYPOTENSION

Patients who get up after being confined to bed for several days, soldiers who stand at attention for long periods on a hot day, and worshipers kneeling in church may experience the accumulation of venous blood in the limbs or impaired
venous return to the heart, with a consequent fall in the cardiac output and a lowered arterial blood pressure. The general arterial pressure has to be lowered considerably before the cerebral blood flow is diminished.

PHYSICAL AND PSYCHOLOGIC SHOCK

The profound and prolonged fall in blood pressure that may follow physical trauma, such as an automobile accident or extensive surgery, especially in older adults in whom the cerebral arteries are already narrowed by disease, may cause the patient to lose consciousness. Hyperventilation in anxiety states may reduce the cerebral blood flow by lowering the carbon dioxide content of the blood.

BLOOD VISCOSITY CHANGES

In polycythemia vera, the cerebral blood flow is considerably reduced as the result of an increase in the viscosity of the blood.

CAROTID SINUS SYNDROME

The carotid sinus, situated at the proximal end of the internal carotid artery, is extremely sensitive to changes in arterial blood pressure. Distention of the arterial wall causes a reflex slowing of the heart rate and a fall in blood pressure. This occurs as the result of an increased number of nervous impulses passing up the sinus nerve, a branch of the glossopharyngeal nerve, which connects with the cardioinhibitory and vasomotor centers. Hypersensitivity of the reflex or external pressure may cause the blood pressure to fall suddenly and produce cerebral ischemia and loss of consciousness.

HEART DISEASE

Any severe cardiac disease, such as coronary thrombosis, auricular fibrillation, or heart block, that results in a marked fall in cardiac output will result in a severe fall in general arterial blood pressure and reduction in cerebral blood flow.

ARTERIAL WALL DISEASE

The most common cause of narrowing of the lumen of the arteries that supply the brain is atheroma. This disease may affect the main arteries supplying the brain in their course through the neck as well as their course within the skull. Moreover, the impairment of the cerebral circulation may be worsened by an attack of coronary thrombosis with its associated hypotension, shock due to surgical procedures, severe anemia, or even rotation of the head with external pressure on the carotid arteries.

Atheromatous degeneration of the cerebral arteries occurs most commonly in middle or old age and often complicates diabetes and hypertension. When actual blockage of an artery occurs, the effect will depend on the size and location of the vessel. The nerve cells and their fibers will degenerate in the avascular area, and the surrounding neuroglia will proliferate and invade the area. In patients with generalized narrowing of the cerebral arteries without blockage of a single artery, the brain will undergo a diffuse atrophy. It should be remembered that a very narrow atheromatous artery may be blocked by a thrombus, thus totally closing the lumen.

DISEASES CAUSING ARTERIAL LUMEN BLOCKAGE

Embolism of a cerebral artery can occur in two forms: (1) a thrombus (by far the most common) and (2) fat globules. The thrombus may develop anywhere on the endothelial lining from the left side of the heart to the parent vessels of the cerebral arteries. A common site of origin is
an atheromatous plaque on the internal carotid, common carotid, or vertebral artery. Another area is the site of endocarditis on the mitral or aortic valve or the endocardial lining of a myocardial infarction following a coronary thrombosis. In women, cerebral thrombosis is more common among those taking oral contraceptives, especially those taking a high-dose estrogen-progesterone combination.

Fat embolism usually follows severe fractures of one of the long bones. Fat globules from the macerated yellow marrow enter the nutrient veins, pass through the pulmonary circulation, and end up blocking multiple small cerebral end arteries.

Cerebral Aneurysms

Congenital aneurysms occur most commonly at the site where two arteries join in the formation of the circle of Willis. At this point, the tunica media has a deficiency and this is complicated by the development of atheroma, which so weakens the arterial wall that a local dilatation occurs. The aneurysm may press on neighboring structures, such as the optic nerve or the third, fourth, or sixth cranial nerve, and produce signs or symptoms or may suddenly rupture into the subarachnoid space. In the latter case, a severe pain in the head suddenly develops, followed by mental confusion. Death may quickly occur, or the patient may survive the first bleeding only to die a few days or weeks later. Clipping or ligating the neck of the aneurysm offers the best chance of recovery.

Other than congenital aneurysms, aneurysms are rare and include those due to softening of the arterial wall following the lodging of an infected embolus; those due to damage of the internal carotid artery as it lies within the cavernous sinus following a fracture of the skull; and those that are associated with disease of the arterial wall, such as atheroma.

Intracranial Hemorrhage

Intracranial hemorrhage can result from trauma or cerebral vascular lesions. Four varieties are considered: (1) epidural, (2) subdural, (3) subarachnoid, and (4) cerebral. Epidural and subdural hemorrhages are described on pp. 429-430.

Subarachnoid Hemorrhage

Subarachnoid hemorrhage usually results from leakage or rupture of a congenital aneurysm on the cerebral arterial circle or, less commonly, from an angioma or contusion and laceration of the brain and meninges. The symptoms, which are sudden in onset, will include severe headache, stiffness of the neck, and loss of consciousness. The diagnosis is established by the use of computed tomography (CT). The dense areas of the blood in the subarachnoid space can be identified. The withdrawal of heavily blood-stained cerebrospinal fluid through a lumbar puncture is also diagnostic, but this method has been replaced by the use of CT.

Cerebral Hemorrhage

Cerebral hemorrhage generally is due to rupture of an atheromatous artery and is most common in patients with hypertension. It usually occurs in individuals of middle age and often involves a rupture of the thin-walled lenticulostriate artery, a branch of the middle cerebral artery. The important corticonuclear and corticospinal fibers in the internal capsule are damaged, producing hemiplegia on the opposite side of the body. The patient immediately loses consciousness, and the paralysis is evident when consciousness is regained. In some cases, the hemorrhage bursts into the
lateral ventricle, resulting in deeper unconsciousness and corticospinal lesions on both sides of the body. Hemorrhage may also occur into the pons and cerebellum.

Computed Tomography, Magnetic Resonance Imaging, and Positron Emission Tomography

CT, magnetic resonance imaging (MRI), and PET are techniques that are indispensable in making the diagnosis of different forms of cerebrovascular disease. The diagnosis can usually be made with speed, accuracy, and safety. An intracranial blood clot can be recognized by its density. These techniques have largely replaced cerebral angiography (see below).

Cerebral Angiography

The technique of cerebral angiography is used for the detection of abnormalities of the blood vessels; the detection and localization of space-occupying lesions such as tumors, hematomas, or abscesses; or the determination of the vascular pattern of tumors to aid in the diagnosis of their pathology. With the patient under general anesthesia and in the supine position, the head is centered on a radiographic apparatus that will take repeated radiographs at 2 -second intervals. Both anteroposterior and lateral projections are obtained. A radiopaque medium is injected rapidly into the lumen of the common carotid or vertebral artery or is indirectly introduced into one of these arteries through a catheter inserted into the radial or femoral artery. As the radiopaque material is rapidly introduced, a series of films is exposed. By this means, the cerebral arteries, the capillary flush, and the veins may be demonstrated. Examples of normal-appearing carotid and vertebral angiograms are shown in Figures 17-8 to 17-15.

Cerebral angiography is an invasive technique that unfortunately has a morbidity of 0.5% to 2.5%. CT and MRI should therefore be used whenever possible. PET is now also used extensively.

Spinal Cord Ischemia

The blood supply to the spinal cord is surprisingly meager considering the importance of this nervous tissue. The posterior and anterior spinal arteries are of small and variable diameter, and the reinforcing segmental arteries vary in number and size.

The posterior third of the spinal cord receives its arterial supply from the posterior spinal arteries. The anterior two-thirds of the spinal cord are supplied by the small, tenuous anterior spinal artery. This latter artery therefore supplies the anterior white column, the anterior gray horns, and the anterior part of the lateral white columns and the root of the posterior horns.

Occlusion of the anterior spinal artery may produce the following signs and symptoms (Fig. 17-16).

1. Loss of motor function (paraplegia) below the level of the lesion occurs due to bilateral damage to the corticospinal tracts.
2. Bilateral thermoanesthesia and analgesia occur below the level of the lesion due to bilateral damage to the spinothalamic tracts.
3. Weakness of the limb muscles may occur due to damage of the anterior gray horns in the cervical or lumbar regions of the cord.
4. Loss of bladder and bowel control occurs due to damage of the descending autonomic tracts.

Figure 17-8 Lateral internal carotid arteriogram. Male aged 20 years.

Figure 17-9 Main features seen in radiograph in Figure 17-8.

Figure 17-10 Anteroposterior internal carotid arteriogram. Male aged 20 years.

Figure 17-11 Main features seen in the radiograph in Figure 17-10.

Figure 17-12 Lateral vertebral arteriogram. Male aged 20 years.

Figure 17-13 Main features shown in the radiograph in Figure 17-12.

Figure 17-14 Anteroposterior (angled) vertebral arteriogram. Woman aged 35 years.

Figure 17-15 Main features shown in the radiograph in Figure 17-14.

Figure 17-16 Anterior spinal artery occlusion. Pink area denotes region of spinal cord affected.
5. Position sense, vibration, and light touch are normal due to preservation of the posterior white columns that are supplied by the posterior spinal arteries.

Ischemia of the spinal cord can easily follow minor damage to the arterial supply as the result of nerve block procedures, aortic surgery, or any operation in which severe hypotension occurs. The fourth thoracic and first lumbar segments of the cord are particularly prone to ischemia.

Spinal Cord Ischemia and Thoracic Aortic Dissection The thoracic region of the spinal cord receives its segmental arteries from the posterior intercostal arteries, which
arise directly from the thoracic aorta. In thoracic aortic dissection, the expanding blood clot in the aortic wall can block the origins of the posterior intercostal arteries, causing ischemia of the spinal cord.

Spinal Cord Ischemia as a Complication of a Leaking Abdominal Aortic Aneurysm
The lumbar region of the spinal cord receives its segmental arteries from the lumbar arteries, which are branches of the abdominal aorta. The effect of direct pressure on the lumbar arteries by a leaking aneurysm can interfere with the blood supply to the spinal cord.

Key Concepts

Blood Supply of the Brain

- The brain is supplied by the two internal carotid and the two vertebral arteries that lie within cerebrospinal fluid of the subarachnoid space.
- The internal carotid begins at the bifurcation of the common carotid in the neck, where it possesses a local dilation called the carotid sinus.
- The internal carotid enters the cranial cavity through the carotid canal of the temporal bone.
- The internal carotid terminates as the anterior and middle cerebral arteries after giving off ophthalmic and posterior communicating arteries.
- The two vertebral arteries enter the cranial cavity through the foramen magnum after ascending through the transverse foramina of the cervical vertebrae.
- The cranial portion of the vertebral artery gives off the posterior spinal, anterior spinal, posterior inferior cerebellar, medullary, and meningeal arteries.
- The vertebral arteries merge to form the basilar artery on the anterior surface of the pons.
- The basilar artery branches into pontine, labyrinthine, anterior inferior cerebellar, superior cerebellar, and posterior cerebral arteries.
- The circle of Willis is formed by the anastomosis between the two internal carotid and vertebral blood supplies by communication of the anterior cerebral and anterior communicating arteries, internal carotid arteries, posterior communicating and posterior cerebral arteries, and the basilar artery.
- The corpus striatum and internal capsule are supplied by the medial and lateral striate branches of the middle cerebral artery.
- The thalamus is supplied by branches of the posterior communicating, basilar, and posterior cerebral arteries.
- The midbrain is supplied by the posterior cerebral, superior cerebellar, and basilar arteries.
- The pons is supplied by the basilar, anterior inferior, and superior cerebellar arteries.
- The medulla oblongata is supplied by the vertebral, anterior and posterior spinal, posterior inferior cerebellar, and basilar arteries.
- The cerebellum is supplied by the superior cerebellar, anterior inferior cerebellar, and posterior inferior cerebellar arteries.

Blood Supply of the Spinal Cord

- The spinal cord receives its arterial supply from three small arteries: two posterior spinal arteries and the anterior spinal artery.
- These longitudinally running arteries are reinforced by small segmentally arranged arteries that enter the vertebral column through the intervertebral foramina of the vertebral column.

? Clinical Problem Solving

1. A distinguished neurosurgeon, while giving a lecture on cerebrovascular accidents, made the following statement: "It is generally agreed that there are no anastomoses of clinical importance between the terminal end arteries within the brain substance, but there are many important anastomoses between the large arteries, both within and outside the skull, and these may play a major role in determining the extent of brain damage in cerebral vascular disease." Comment on this statement, and name the sites at which important arterial anastomoses take place.
2. During examination of a carotid angiogram, the contrast medium had filled the anterior and middle cerebral arteries but had failed to fill the posterior cerebral artery. Careful following of the contrast medium showed it to enter the posterior communicating artery but to extend no farther. Explain this phenomenon in a normal person.
3. A 45-year-old man was admitted to the hospital after collapsing in his home 3 days previously. He was in a partial state of unconsciousness on the floor and was found by a friend. On physical examination, he had right-sided homonymous hemianopia, although careful examination of the fields of vision showed that the macular regions were normal. Right-sided hemianesthesia and hemianalgesia also were present, although the patient complained of severe burning pain in the right leg. During the first 24 hours in the hospital, the patient demonstrated mild right-sided hemiparesis of the flaccid type, which disappeared within 2 days. What is your diagnosis? Be specific in describing the branches of the artery that are involved.
4. During the course of an autopsy on a patient who had recently died of cerebrovascular disease, the pathologist made the comment that in atherosclerosis of the cerebral arteries, the atheromatous plaques tend to occur where the main arteries divide or where the arteries suddenly curve. At these sites, pressure flow changes may be a factor
in the causation of the disease process. Using your knowledge of anatomy, name as many sites as you can where the main cerebral arteries divide or undergo abrupt change in their course.
5. Having carefully examined a male patient with cerebrovascular disease, the physician met with the family to discuss the nature of the illness, the course of treatment, and the prognosis. The daughter asked the physician what was meant by the term stroke as well as its common causes. He was also asked why the clinical findings vary so much from patient to patient. Using your knowledge of the anatomy and physiology of cerebral blood flow, explain why patients with cerebrovascular disease present such a variety of syndromes.
6. The classic sign of cerebrovascular disease is hemiplegia, yet we know that most patients also exhibit sensory deficits of different types. Using your knowledge of the anatomical distribution of the cerebral arteries, discuss the main types of sensory loss that you may find in such patients.
7. During the discussion of the symptoms and signs of a 70-year-old woman who had been admitted to the hospital for treatment of cerebrovascular disease, a fourth-year medical student made the comment that she was surprised to find that many of the signs and symptoms were bilateral in this patient. She said that the three previous patients she had examined had displayed only unilateral signs and symptoms. Using your knowledge of neuroanatomy, explain why some patients exhibit bilateral signs and symptoms, while in others the syndrome is clearly unilateral.
8. Neurologists speak frequently of the dominant hemisphere and if cerebrovascular disease should involve that hemisphere, one would expect the patient possibly to have global or total sensorimotor aphasia. Explain this phenomenon.
9. Explain why patients with a thrombosis of the middle cerebral artery often present with homonymous hemianopia as well as hemiplegia and hemianesthesia.
10. During the neurobiology course, the professor of neuroanatomy emphasized the importance of knowing the structure and blood supply of the internal capsule. He explained the arrangement of the ascending and descending tracts within the capsule and showed how they were concentrated into a small area between the thalamus and caudate nucleus medially and the lentiform nucleus laterally. Clearly, an interruption of the blood supply to this vital area would produce widespread neurologic defects. What is the blood supply to the internal capsule?
11. A 36-year-old man visited his physician with a complaint that on three occasions during the past 6 months, he had fainted at work. During careful questioning, the patient stated that on each occasion, he had fainted while sitting at his desk and while interviewing office personnel; he added that the person being interviewed sat in a chair immediately to the right of the desk. He said that before each fainting attack he felt dizzy; then, he lost consciousness only to recover within a few moments. The previous evening, he had a similar dizzy spell when he turned his head quickly to the right to talk to a friend in the street. The physician noted that the patient wore a stiff collar that was rather close fitting. When the physician commented on this, the patient stated that he always wore this type of collar to work. No abnormal physical signs were found. Using your knowledge of anatomy and physiology, what diagnosis would you make?
12. A 45-year-old man, a company director, rose to give his annual after-dinner speech to the board when he suddenly experienced an "agonizing, crushing" pain over the sternum. Feeling giddy and weak, he fell back in his chair. A few moments later, he lapsed into unconsciousness. An attendant at the dinner, who had received some training in cardiopulmonary resuscitation while a member of the armed forces, ran forward and noted that the patient had stopped breathing. He quickly started mouth-tomouth resuscitation and cardiac compression and kept going until ambulance personnel arrived to take the patient to the hospital. The physician in the intensive care unit at the hospital later told the patient that his life had been saved by the alertness and competence of the attendant at the dinner. Using your knowledge of neurophysiology, state how long brain tissue can survive with complete cardiac arrest and when breathing has ceased.
13. A 62-year-old man with a history of hypertension visited his physician because the day before, he had temporarily lost the sight in his right eye. He explained that the sight loss was partial and lasted about half an hour. On close questioning, the patient admitted that he had had similar episodes of blindness in the same eye during the previous 6 months, but they had lasted only a few minutes. The patient also mentioned that there were days when he could not remember the names of people and things. He also had recently experienced severe right-sided
headaches. When asked about his activities, he said that he could not walk as well as he used to and his left leg sometimes felt weak and numb. While performing a careful physical examination, the physician heard with his stethoscope a distinct systolic bruit over the right side of the neck. Given that the patient has vascular disease of the brain, which artery is likely to be involved in the disease process? What special clinical investigations could you perform to confirm the diagnosis?
14. A 39-year-old man was admitted to the hospital with a history of a sudden excruciating, generalized headache while gardening. This was followed, 10 minutes later, by the patient collapsing to the ground in a state of unconsciousness. After being carried indoors and placed on a settee, the patient regained consciousness but appeared confused. He complained of a severe headache and a stiff neck. Physical examination revealed some rigidity of the neck but nothing further. A careful neurologic examination 3 days later revealed some loss of tone in the muscles of the left leg. Using your knowledge of anatomy, make the diagnosis. What is the reason for the neck rigidity?
15. A 26-year-old man, on leaving a bar after a few drinks, stepped into the road at 1:00 AM and was struck by a passing car. Fortunately, the car was traveling slowly and struck the patient's head a glancing blow. One hour later, a policeman found the patient unconscious on the sidewalk. Physical examination at the local hospital found that the patient had recovered consciousness for a few minutes but then had quickly relapsed into an unconscious state. The right pupil was dilated, and the muscle tone of the left leg was found to be less than normal. A positive Babinski sign was obtained on the left side. Examination of the scalp showed a severe bruise over the right temple, and a lateral radiograph of the skull showed a fracture of the anterior inferior angle of the parietal bone. A CT scan showed a dense area extending from anterior to posterior along the inner table of the right parietal bone. What is the diagnosis? Let us suppose that the equipment for performing a CT scan was unavailable and that it was decided to perform a lumbar puncture; this test revealed a raised cerebrospinal fluid pressure, and the fluid was very slightly blood stained. Explain these additional findings.
16. A 50-year-old woman complaining of headaches, drowsiness, and mental confusion visited her physician. On close questioning, the patient distinctly remembered striking her head against a closet door when bending down 3 weeks previously. A CT scan revealed the presence of a large space-occupying lesion over the right frontal lobe of the brain. What is the possible diagnosis?
17. A 55-year-old man with a history of hypertension collapsed in the street while walking to work. He complained of a sudden severe headache. After 5 minutes, his face began to sag on the right side
and his speech became slurred. On admission to the hospital, his right arm and leg were found to be weaker than the left, and the muscles were hypotonic. The eyes were deviated to the left. Later, the right arm and leg showed complete paralysis and were insensitive to pinprick. A positive Babinski sign was present on the right side. Two hours later, the patient relapsed into a deep coma with bilateral
dilated fixed pupils. Later, the respirations became deep and irregular, and the patient died 6 hours later. Using your knowledge of neuroanatomy, make the diagnosis.
18. What is the blood supply to the spinal cord? Which areas of the spinal cord are supplied by the anterior spinal artery? Which regions of the spinal cord are most susceptible to ischemia?

Answers and Explanations to Clinical Problem Solving

1. Once the terminal branches of the cerebral arteries enter the brain substance, no further anastomoses occur. Blockage of such end arteries by disease is quickly followed by neuronal death and necrosis. The surrounding neuroglia then usually proliferates and invades the area, producing a neuroglial scar or forming a cystic cavity. The following important anastomoses exist between the cerebral arteries: (a) the circle of Willis; (b) anastomoses between the branches of the cerebral arteries on the surface of the cerebral hemispheres and the cerebellar hemispheres; and (c) anastomoses between the branches of the internal and external carotid arteries: (i) at their origin at the common carotid artery, (ii) at the anastomosis between the branches of the ophthalmic artery within the orbit and the facial and maxillary arteries, and (iii) between the meningeal branches of the internal carotid artery and the middle meningeal artery.
2. The work of McDonald and Potter in 1951 showed that the posterior communicating artery is the site at which the streams of blood from the internal carotid and vertebral arteries on the same side come together, and since their pressures at this point are equal, they do not mix. Nevertheless, in clinical practice, good filling of the posterior cerebral artery with radiopaque material as shown by carotid angiography occurs in about 25% of patients. Slight filling also may be seen in other normal individuals. The variable results can be explained on the basis that the size of the arteries making up the arterial circle is subject to considerable variation, and consequently, the blood flow in different individuals may vary.
3. Occlusion of the cortical branches of the left posterior cerebral artery will give rise to right-sided homonymous hemianopia because of ischemia of the primary visual area in the calcarine fissure. The escape of the macular region could be accounted for by the overlapping of the arterial supply of this area of the occipital lobe by the left posterior and left middle cerebral arteries. The right-sided hemianesthesia and the severe burning pain in the right leg are referred to clinically as the thalamic syndrome and are due to occlusion of one of the central branches of the left posterior cerebral artery that supplies the sensory nuclei of the left thalamus.

The presence of a mild fleeting right-sided hemiparesis could be explained by a temporary occlusion of a branch of the left posterior cerebral artery to the left cerebral peduncle.
4. Atheromatous plaques tend to occur at the following sites: (a) carotid sinus of the internal carotid artery at or just beyond the bifurcation of the common carotid artery, (b) the first main bifurcation of the middle cerebral artery, (c) where the vertebral arteries join to form the basilar artery, (d) where the anterior cerebral artery curves superiorly and posteriorly over the genu of the corpus callosum, and (e) where the posterior cerebral artery passes around the lateral side of the cerebral peduncle.
5. A stroke may be defined as a sudden development of a neurologic defect, usually associated with the development of some degree of hemiplegia and sometimes accompanied by unconsciousness; it is usually caused by a cerebrovascular accident. The symptoms and signs will depend on the cause of the interruption of cerebral blood flow and the size of the artery involved. For example, cerebral embolism or cerebral hemorrhage is a sudden event, whereas the development of atherosclerosis in a patient with hypertension is a slow process that suddenly may become worse when thrombosis occurs at the site of the atheromatous plaque. Hemiplegia is the most common sign, but many additional sensory defects may develop, depending on the artery blocked. Examples are hemianesthesia, hemianopia, dysphasia, and dysarthria.
6. Occlusion of the middle cerebral artery or its branches can produce, in addition to paralysis of the muscles of the opposite side of the body, contralateral hemianesthesia owing to ischemia of the postcentral gyrus and homonymous hemianopia owing to ischemia of the optic radiation. Occlusion of the anterior cerebral artery or its branches may produce contralateral sensory loss in the leg, foot, and toes owing to ischemia of the leg area of the cerebral cortex. Occlusion of the posterior cerebral artery or its branches may produce contralateral homonymous hemianopia owing to ischemia of the primary visual area in the region of the calcarine fissure. If the branches to the thalamus also are blocked, there will also be contralateral hemianesthesia and possibly the development of severe pain in the same areas.

These sensory deficits are the main ones seen. The degree of sensory involvement will depend on the size and number of branches of the artery occluded.
7. The internal carotid and the basilar arteries are equally affected by disease. The internal carotid artery supplies predominantly one cerebral hemisphere through the anterior cerebral and middle cerebral branches; therefore, occlusion of the internal carotid artery will produce contralateral hemiplegia, hemianesthesia, hemianopia, and aphasia and agnosia, depending on whether the dominant hemisphere is involved. On the other hand, the basilar artery contributes to the blood supply of both sides of the brain through the two posterior cerebral arteries and the many branches to both sides of the brainstem. Consequently, occlusion of the basilar artery will result in bilateral motor and sensory losses and involvement of the cranial nerves and cerebellum on both sides of the body.
8. The dominant hemisphere possesses the language function. In right-handed individuals (and in some left-handed persons), language is a function of the left hemisphere. A cerebrovascular accident involving the middle cerebral artery on the left side will therefore be more serious than one on the right side, since it will involve the cortical speech area and cause a total sensory motor aphasia. In persons who have a dominant right hemisphere, the reverse occurs.
9. The middle cerebral artery, in addition to giving off cortical branches, gives off central branches that supply part of the posterior limb of the internal capsule and the optic radiation. Occlusion of these branches will cause contralateral homonymous hemianopia.
10. Since so many important ascending and descending tracts travel in the internal capsule, an occlusion of its blood supply would produce a widespread neurologic deficit. The internal capsule is supplied by the medial and lateral striate central branches of the middle cerebral artery and by the central branches of the anterior cerebral artery.
11. This patient has the symptoms of the carotid sinus syndrome. For a full description of this syndrome, see page 473 .
12. It has been estimated that irreversible changes start to occur in the cerebral nervous tissue about 4 minutes following the complete arrest of cerebral blood flow. (This figure may be higher if the patient's body has been cooled.)
13. The impairment of vision of the right eye with motor symptoms in the left leg strongly suggests partial occlusion of the right internal carotid artery. When these are coupled with impairment of memory and a systolic bruit over the right internal carotid artery, the diagnosis is almost certain. The right-sided headaches are also common symptoms in this condition. A right-sided carotid angiogram can confirm the presence of extreme narrowing of the internal carotid artery at its origin. Ophthalmodynamometric measurements can show diminished retinal arterial pressure on the right side owing to diminished pressure in the right ophthalmic artery.
14. This patient had a congenital aneurysm of the anterior communicating artery. The sudden onset of a severe headache, which is often so dramatic that the patient feels as though he or she has been hit on the head, is characteristic of rupture of a congenital aneurysm into the subarachnoid space. The stiff or rigid neck is due to meningeal irritation caused by the presence of blood in the subarachnoid space. This patient had no evidence of previous pressure on the optic nerve leading to unilateral visual defect, which sometimes occurs when the aneurysm is situated on the anterior part of the circle of Willis. The loss of tone in the left leg muscles is difficult to explain, although it may be due to the sudden hemorrhage into the subarachnoid space causing damage to the right cerebral hemisphere.
15. This patient had a right-sided extradural hemorrhage due to a fracture of the anterior part of the parietal bone, which tore the anterior division of the right middle meningeal artery. The history of the patient being found unconscious and then regaining consciousness for a period only to relapse into unconsciousness is a characteristic finding. The initial trauma usually is responsible for the initial loss of consciousness. The relapse into an unconscious state is due to the accumulation of a large blood clot under arterial pressure outside the meningeal layer of dura. This is responsible for the dilated pupil on the right side due to indirect pressure on the right oculomotor nerve. The pressure on the right precentral gyrus causes the hemiplegia and weakness of the left leg; it also causes the positive Babinski sign on the left side. The presence of a large blood clot in the intracranial cavity was easily recognized on a CT scan. The presence of the clot was also responsible for the raised cerebrospinal fluid pressure. The slight blood staining of the fluid obtained from a spinal tap was due to a small leakage of blood from the extradural space into the subarachnoid space at the fracture site.
16. This patient had a chronic subdural hematoma following trauma to the head 3 weeks previously. This resulted from one of the superior cerebral veins tearing at its point of entrance into the superior sagittal sinus. The blood accumulated under low pressure between the dura and the arachnoid. The headaches, drowsiness, and mental confusion were due to the raised intracranial pressure. The blood clot could be seen easily on the CT scan. The blood clot was successfully removed through a burr hole in the skull, and the patient had no further symptoms.
17. The history of hypertension, sudden onset of severe headache, slurring of speech, right lower facial weakness, right-sided hemiplegia, right positive Babinski sign, right-sided hemianesthesia, and deviation of the eyes to the left side are all diagnostic of a cerebrovascular accident involving the left cerebral hemisphere. The perforating central branches of the left middle cerebral artery were found at autopsy to be extensively affected by atherosclerosis. One of these arteries had ruptured, resulting in
a large hemorrhage into the left lentiform nucleus and left internal capsule. The combination of hypertension and atherosclerotic degeneration of the artery was responsible for the fatal hemorrhage. The dilated fixed pupils, the irregularity in breathing, and, finally, death were due to the raised pressure within the hemisphere causing downward pressure effects within the brainstem.
18. The blood supply to the spinal cord is fully described on pages 471-472. The anterior spinal artery supplies the anterior two-thirds of the spinal cord. The upper and lower thoracic segments of the spinal cord have a relatively poor supply of blood because the anterior spinal artery in this region may be extremely small; therefore, they are more susceptible to ischemia.

Review Questions

Directions: Each of the numbered items in this section is followed by answers. Select the ONE lettered answer that is CORRECT.

1. The following statements concern the blood supply to the brain:
(a) The brain receives its blood supply directly from the two external carotid arteries.
(b) The circle of Willis is formed by the anterior cerebral, the internal carotid, the posterior cerebral, the basilar, and the anterior and posterior communicating arteries.
(c) The cerebral arteries do not anastomose on the surface of the brain.
(d) Numerous anastomoses occur between the branches of the cerebral arteries once they have entered the substance of the brain.
(e) The main blood supply to the internal capsule is from the central branches of the anterior cerebral artery.
2. The areas of the cerebral cortex listed below receive their arterial supply as indicated:
(a) The precentral gyrus (face area) is supplied by the middle cerebral artery.
(b) The postcentral gyrus (face area) is supplied by the anterior cerebral artery.
(c) The cuneus is supplied by the anterior cerebral artery.
(d) The inferior temporal gyrus is supplied by the middle cerebral artery.
(e) The Wernicke area is supplied by the posterior cerebral artery.
3. The arteries listed below arise from the main stem arteries as indicated:
(a) The ophthalmic artery is a branch of the middle cerebral artery.
(b) The pontine arteries are branches of the internal carotid artery.
(c) The posterior communicating artery is a branch of the middle cerebral artery.
(d) The posterior spinal artery arises from the vertebral artery.
(e) The posterior inferior cerebellar artery is a branch of the basilar artery.
4. The veins listed below drain into the venous sinuses indicated:
(a) The superior cerebral veins drain into the inferior sagittal sinus.
(b) The great cerebral vein drains into the superior sagittal sinus.
(c) The superior cerebellar veins drain only into the straight sinus.
(d) The spinal veins drain into the external vertebral venous plexus.
(e) The inferior sagittal sinus drains into the straight sinus.
5. The following statements concern the cerebral blood flow:
(a) The sympathetic postganglionic fibers exert great control over the diameter of the cerebral blood vessels.
(b) It varies greatly with changes in the general blood pressure.
(c) Oxygen tension in the cerebral blood has no effect on the diameter of the cerebral blood vessels.
(d) One of the most powerful vasodilators of cerebral blood vessels is carbon dioxide.
(e) The blood flow for a particular area of nervous tissue following occlusion of a cerebral artery does not depend on the collateral circulation.
6. The following statements concern cerebral ischemia:
(a) Atheromatous degeneration of a cerebral artery does not cause degeneration of the nerve cells in the avascular area due to the presence of cerebrospinal fluid.
(b) Neuronal function ceases after the blood flow has stopped for about 10 seconds.
(c) Irreversible cerebral damage starts to occur after the blood flow has ceased for about 4 minutes.
(d) Shock occurring as the result of severe physical trauma does not result in cerebral ischemia.
(e) Cooling of the patient's body following a cerebrovascular accident speeds up cerebral degeneration.

Figure 17-17 The arteries of the inferior surface of the brain.

Matching Questions. Directions: The following questions apply to Figure 17-17. Match the numbered arteries listed below with the appropriate lettered arteries. Each lettered option may be selected once, more than once, or not at all.
7. Number 1
(a) Middle cerebral artery
8. Number 2
(b) Anterior communicating artery
9. Number 3
(c) Posterior cerebral artery
10. Number 4
(d) Basilar artery
11. Number 5
(e) None of the above
12. Number 6

Directions: In the next item, select the ONE lettered answer that is CORRECT.
13. The following statements concern the blood supply to the spinal cord:
(a) The posterior spinal arteries supply the posterior third of the spinal cord.
(b) The veins do not communicate with the veins of the brain and the venous sinuses.
(c) The arteria radicularis magna (artery of Adamkiewicz) arises in the lower thoracic region from the arch of the aorta.
(d) The anterior spinal artery is double but usually arises from one vertebral artery.
(e) The spinal arteries are not reinforced by branches of local arteries.

Directions: Each case history is followed by questions. Read the case history, then select the ONE BEST lettered answer.

A 58-year-old man, while eating his evening meal, suddenly complained of a severe headache. Moments later, he slumped forward and lost consciousness.
14. On being admitted to the hospital, the examining physician could have found the following physical
signs except:
(a) He was in a deep coma, and his breathing was deep and slow.
(b) The patient's head was turned to the left.
(c) The right side of his face was flattened, and saliva was drooling out of the right corner of his mouth.
(d) The muscle tone of the limbs was less on the right side than on the left.
(e) The right abdominal reflexes were absent, and there was a positive Babinski response on the left side.
15. Three days later, the patient regained consciousness, and the following additional signs could have become apparent except:
(a) The right arm and, to a lesser extent, the right leg were paralyzed.
(b) Movements of the left arm and leg and the left side of the face were normal.
(c) The upper and lower parts of the right side of his face were paralyzed.
(d) The patient had difficulty in swallowing.
(e) The patient was unable to speak.
16. During the next 2 weeks, the following signs could have developed except:
(a) The muscles of the limbs on the right side became hypertonic.
(b) The tendon reflexes on the right side became hyperactive.
(c) The patient had some sensory loss on the right side.
(d) The patient was suffering from urinary incontinence.
(e) The muscles on the left side exhibited hypotonia.
17. The neurologist in charge of this patient interpreted the findings as follows. All his interpretations were likely to be correct except:
(a) The sudden onset of a severe headache followed by loss of consciousness is a common finding in patients with a blockage of a cerebral artery.
(b) The depth of coma is unrelated to the extent of the arterial blockage.
(c) Paralysis of the face on the right side indicated the presence of a lesion on the left side of the brain.
(d) The patient's head and eyes were turned to the left (i.e., to the side of the lesion).
(e) The loss of right-sided abdominal reflexes indicated the presence of a lesion on the left side of the brain.
18. The following physical signs and known anatomical data strongly suggested the involvement of the left middle cerebral artery except:
(a) Paralysis of the right side of the face and the right arm was more severe than that of the right leg.
(b) The presence of aphasia.
(c) The central branches of the middle cerebral artery do not supply the lentiform nucleus, the caudate nucleus, and the internal capsule.
(d) The left middle cerebral artery supplies the entire lateral surface of the cerebral hemisphere except for the narrow strip supplied by the anterior cerebral artery.
(e) The left posterior cerebral artery supplies the occipital pole and the inferolateral surface of the cerebral hemisphere.

A 60-year-old man was admitted to the emergency department, complaining of the sudden onset of excruciating, sharp, tearing pain localized to the back of the chest and the back. After a thorough physical and radiologic examination, a diagnosis of dissection of the descending thoracic aorta was made. Within a few hours, the patient started to experience "girdle" pain
involving the fourth thoracic dermatome on both sides. Later, he was found to have bilateral thermoanesthesia and analgesia below the level of the fourth thoracic dermatome. Position sense, vibration, and light touch remained normal. Complete spastic paralysis of both legs quickly developed.
19. The sudden onset of "girdle" pain in this patient was most likely caused by:
(a) Pressure on the fourth thoracic spinal nerves
(b) Blockage of the origins of the posterior intercostal arteries that give rise to the segmental spinal arteries by the aortic dissection
(c) Discomfort caused by the expanding aneurysm
(d) Osteoarthritis of the vertebral column
20. The development of bilateral thermoanesthesia and analgesia below the level of the fourth thoracic segment of the cord and the later development of paraplegia could be caused by:
(a) Absent circulation in the posterior spinal arteries
(b) Cerebral hemorrhage
(c) Absent circulation in the anterior spinal artery
(d) Collapse of the fourth thoracic vertebral body

Answers and Explanations to Review Questions

1. B is correct. The circle of Willis is formed by the anterior cerebral, the internal carotid, the posterior cerebral, the basilar, and the anterior and posterior communicating arteries (see Fig. 17-6). A. The brain receives its blood supply directly and indirectly from the two internal carotid and the two vertebral arteries that lie within the subarachnoid space. C. The cerebral arteries anastomose on the surface of the brain. D. No anastomoses exist between the branches of the cerebral arteries once they have entered the substance of the brain. E. The main blood supply to the internal capsule is from the central branches of the middle cerebral artery.
2. A is correct. The precentral gyrus (face area) is supplied by the middle cerebral artery (see Figs. 8-5 and 17-3). B. The face area of the postcentral gyrus is supplied by the middle cerebral artery. C. The cuneus is supplied by the posterior cerebral artery (see Fig. 17-3). D. The inferior temporal gyrus is supplied by the posterior cerebral artery (see Fig. 17-3). E. The Wernicke area is supplied by the middle cerebral artery.
3. D is correct. The posterior spinal artery arises from the vertebral artery (see Fig. 17-7). A. The ophthalmic artery is a branch of the cerebral portion of the internal carotid artery. B. The pontine arteries are branches of the basilar artery (see Fig. 17-2). C. The posterior communicating artery is a branch of the internal carotid artery (see Fig. 17-2). E. The posterior inferior cerebellar artery is a branch of the vertebral artery (see Fig. 17-2).
4. E is correct. The inferior sagittal sinus drains into the straight sinus (see Fig. 17-5). A. The superior cerebral veins drain into the superior sagittal sinus (see Fig. 17-5). B. The great cerebral vein drains into the straight sinus (see Fig. 17-5). C. The superior cerebellar veins drain into the straight sinus, the transverse sinus, and the occipital sinus (see Fig. 17-5). D. The spinal veins drain into the internal vertebral venous plexus.
5. D is correct. One of the most powerful vasodilators of cerebral blood vessels is carbon dioxide. A. The sympathetic postganglionic fibers exert very little control over the diameter of the cerebral blood vessels. B. The cerebral blood flow varies only slightly with changes in the general blood pressure. C. Low oxygen tension in the cerebral blood causes vasodilation of the cerebral blood vessels. E. The blood flow for a particular area of nervous tissue following occlusion of a cerebral artery depends on the adequacy of the collateral circulation.
6. C is correct. Irreversible cerebral damage starts to occur after blood flow has ceased for about 4 minutes. A. Atheromatous degeneration of a cerebral artery may cause degeneration of the nerve cells in the avascular area and proliferation of the microglial cells in the surrounding area. B. Neuronal function ceases after blood flow has stopped for about 1 minute. D. Shock occurring as the result of severe physical trauma can result in cerebral ischemia. E. Cooling of the patient's body following a cerebrovascular accident slows down cerebral degeneration.

For answers to Questions 7 to 12 , study Figure 17-17 which shows the arteries of the inferior surface of the brain.
7. B is correct; 1 is the anterior communicating artery.
8. C is correct; 2 is the posterior cerebral artery.
9. E is correct; 3 is the left vertebral artery.
10. D is correct; 4 is the basilar artery.
11. E is correct; 5 is the (right) posterior communicating artery.
12. A is correct; 6 is the (right) middle cerebral artery.
13. A is correct. The posterior spinal arteries supply the posterior third of the spinal cord (see p. 471). B. The spinal cord veins communicate with the veins of the brain and the venous sinuses. C. The arteria radicularis magna (artery of Adamkiewicz) arises from the aorta in the lower thoracic or upper lumbar vertebral levels. D. The anterior spinal artery is single but usually arises from both vertebral arteries. E. The spinal arteries are reinforced by radicular arteries, which are branches of local arteries.
14. E is the exception. A positive Babinski sign was present on the right side.
15. C is the exception. The muscles of the upper part of the face on the right side are not affected by a lesion involving the upper motor neurons on the left side of the brain. This is due to the fact that the part of the facial nucleus of the seventh cranial nerve that controls the muscles of the upper part of the face receives corticonuclear fibers from both cerebral hemispheres.
16. E is the exception. The cerebral lesion was on the left side of the brain, and the muscles of the left leg were completely unaffected by the vascular accident.
17. B is the exception. The depth of coma is related to the extent of the arterial blockage.
18. C is the exception. The central branches of the right middle cerebral artery do supply the right lentiform and caudate nuclei and the right internal capsule.
19. B is correct. In the thoracic region, the posterior intercostal arteries arise directly from the thoracic aorta and can be blocked by a blood clot as the aortic dissection progresses. The segmental spinal arteries, which are branches of the posterior intercostal arteries, give origin to the radicular arteries that supply the spinal nerves and their roots. If these arteries are compromised, severe pain is experienced in the distribution of the spinal nerves involved and, hence, the "girdle" pain.
20. C is correct. The blood supply to the spinal cord is meager and if the segmental arteries that reinforce the anterior and posterior spinal arteries are compromised, ischemia of the spinal cord could follow. In this patient, the circulation in the anterior spinal artery ceased and the blood supply to the anterior two-thirds of the spinal cord was cut off. This would explain the sudden development of bilateral thermoanesthesia and analgesia (spinothalamic tracts in both lateral white columns) and the paraplegia (corticospinal tracts in both lateral white columns). The sparing of the sensations of position, vibration, and light touch, which travel in the fasciculus gracilis and fasciculus cuneatus, can be explained by the fact that the posterior white columns are supplied by the posterior spinal arteries in which the circulation is adequate.

(8) Nervous System Development

CHAPTER OBJECTIVES

- To review the development of the nervous system
- To visualize the relationship of different parts of the nervous system to one another
- To understand how the different nerve tracts insinuate themselves between the central masses of gray matter
- To review common congenital anomalies of the nervous system

A pediatrician examines a newborn baby boy after a difficult delivery and finds a soft, fluctuant swelling over the vertebral column in the lumbosacral region. The swelling measures about 3 in $(7.5 \mathrm{~cm})$ in diameter and is covered with a thin layer of intact skin. Transillumination of the sac reveals what appears to be solid nervous tissue. Any neurologic deficit is carefully looked for, and the baby is noted to move both legs normally and appears to respond normally to painful stimulation of the leg skin. Examination of the anal sphincter shows normal tone.

Careful examination for other congenital anomalies, especially hydrocephalus, is also made, but nothing abnormal is detected.

A diagnosis of meningomyelocele is made. In this condition, vertebral arches fail to develop, with herniation of the meninges and nervous tissue through the defect. The child must be operated on; the lower end of the spinal cord and the cauda equina are returned to the vertebral canal, and the vertebral defect is repaired. The child will make an uneventful recovery.

In Chapter 1, the early development of the nervous system was considered to give the reader some insight into how the brain and spinal cord came into existence (see p. 14). In this chapter, the process of development continues, and the different parts of the nervous system followed as they evolve. An embryologic explanation for some of the more common congenital anomalies will be discussed.

SPINAL CORD

In early development, the neural tube is seen to dilate at the cephalic end into the forebrain vesicle, the midbrain vesicle, and the hindbrain vesicle (see Fig. 1-18A). The rest of the tube elongates and remains smaller in diameter; it will form the spinal cord.

The wall of the neural tube consists of a single layer of pseudostratified columnar epithelial cells, called the matrix cells. This thick zone of epithelium, which extends from the cavity of the tube to the exterior, is referred to as the ventricular zone. The nuclei of these cells move in toward the cavity of the tube to divide, and out toward the periphery during the intermitotic
phases of the cell cycle (see Fig. 1-18C). Repeated division of the matrix cells results in an increase in length and diameter of the neural tube. Eventually, the early neuroblasts are formed and are incapable of further division. These cells migrate peripherally to form the intermediate zone. The intermediate zone will form the gray matter of the spinal cord. The neuroblasts now give rise to nerve fibers that grow peripherally and form a layer external to the intermediate zone called the marginal zone. The nerve fibers in the marginal zone become myelinated and form the white matter of the spinal cord.

While the neuroblasts are being formed, the matrix cells also give rise to the astrocytes and the oligodendrocytes of the neuroglia. Later, the microglial cells, which are derived from the surrounding mesenchyme, migrate into the developing spinal cord along with blood vessels. The ependymal cells are formed from the matrix cells that line the neural tube.

The cavity of the neural tube now becomes narrowed to form a dorsiventral cleft with thick lateral walls and thin floor and roof plates (Fig. 18-1A). The intermediate zone of the lateral wall of the tube forms a large anterior thickening known as the basal plate and a smaller

Figure 18-1 Different stages in the development of the spinal cord showing the neural crest cells, which will form the first afferent neurons in the sensory pathway.
posterior thickening known as the alar plate. The neuroblasts in the basal plate will form the motor cells of the anterior column (horn), while the neuroblasts in the alar plate will become the sensory cells of the posterior column. The motor basal plate and the sensory alar plate are separated on each side by the sulcus limitans. The roof and floor plates remain thin, and the cells contribute to the ependyma.

Continued growth of the basal plates on each side of the midline forms a deep longitudinal groove called the anterior median fissure (see Fig. 18-1C). The alar plates also increase in size and extend medially, compressing the posterior part of the lumen of the neural tube. Ultimately, the walls of the posterior portion of the tube fuse, forming the posterior median septum. The lumen of the neural tube becomes the central canal.

Further Development of the Motor Neurons

The medial group of motor neurons forms large multipolar cells whose axons will leave the anterior surface of the spinal cord to supply the musculature of the body. Currently occupying the minds of researchers is how the axons from a developing neuron are guided from their points of origin to a specific target. The growing end of the axon is believed to possess
numerous receptors that respond to chemical cues along the way.

The lateral group of neurons gives rise to axons that will leave the anterior surface of the spinal cord as autonomic preganglionic fibers. Between the first thoracic and second or third lumbar segments of the mature spinal cord, the lateral group of neurons will form the lateral gray column (horn), that is, the sympathetic outflow. Collectively, the axons leaving the anterior surface of the spinal cord will form the anterior roots of the spinal nerves (see Fig. 18-1D).

Afferent Neuron Development in the Sensory Pathway

The first neurons in the sensory pathway have their cell bodies situated outside the spinal cord and are derived from the neural crest (see Figs. 1-16 and 18-1D). The neural crest cells migrate to a posterolateral position on either side of the developing spinal cord and become segmented into cell clusters. Some of the cells in each cluster now differentiate into neuroblasts. Each neuroblast develops two processes: a peripheral process and a central process. The peripheral processes grow out laterally to become typical axons of sensory nerve fibers. The central processes, also axons, grow into the
posterior part of the developing spinal cord and either end in the posterior gray column or ascend through the marginal zone (white matter) to one of the higher brain centers. These central processes are referred to collectively as the posterior root of the spinal nerve (see Fig. 18-1D). The peripheral processes join the anterior root to form the spinal nerve.

Some of the neural crest cells form the capsular or satellite cells, which surround the unipolar nerve cell bodies in a ganglion. Each posterior root ganglion is thus formed of the unipolar neurons and the capsular cells.

Further Development of Posterior Gray Column Sensory Neurons

The neuroblasts that have entered the alar plates now develop processes that enter the marginal zone (white matter) of the cord on the same side and either ascend or descend to a higher or lower level. Other nerve cells send processes to the opposite side of the cord through the floor plate, where they ascend or descend for variable distances (see Fig. 18-1A).

Development of the Meninges and Spinal Cord Relationship to Vertebral Column

The pia mater, arachnoid mater, and dura mater are formed from the mesenchyme (sclerotome) that surrounds the neural tube. The subarachnoid space develops as a cavity in the mesenchyme, which becomes filled with cerebrospinal fluid (CSF). The ligamentum denticulatum is formed from areas of condensation of the mesenchyme.

During the first 2 months of intrauterine life, the spinal cord is the same length as the vertebral column. Thereafter, the developing vertebral column grows more rapidly than the spinal cord; thus, at birth, the coccygeal end of the cord lies at the level of the third lumbar vertebra. In the adult, the lower end of the spinal cord lies at the level of the lower border of the body of the first lumbar vertebra. As a result of this disproportion in the rate of growth of the vertebral column and spinal cord, the anterior and posterior roots of the spinal nerves below the first lumbar segment of the spinal cord descend within the vertebral canal until they reach their appropriate exits through the intervertebral foramina. Moreover, the pia mater, which attached the coccygeal end of the spinal cord to the coccyx, now extends down as a slender fibrous strand from the lower end of the cord to the coccyx and forms the filum terminale. The obliquely coursing anterior and posterior roots of the spinal nerves and the filum terminale, which now occupy the lower end of the vertebral canal, collectively form the cauda equina.

We now know how the cauda equina is enclosed within the subarachnoid space down as far as the level of the second sacral vertebra. In this region, below the level of the lower end of the spinal cord, a lumbar puncture can be performed (see p. 19).

As the result of the development of the limb buds during the fourth month and the additional sensory and
motor neurons, the spinal cord becomes swollen in the cervical and lumbar regions to form the cervical and lumbar enlargements.

BRAIN

Once the neural tube has closed, the three primary vesicles-the forebrain vesicle, the midbrain vesicle, and the hindbrain vesicle-complete their development (Fig. 18-2). The forebrain vesicle will become the forebrain (prosencephalon), the midbrain vesicle will become the midbrain (mesencephalon), and the hindbrain vesicle will become the hindbrain (rhombencephalon).

By the fifth week, the forebrain and hindbrain vesicles divide into two secondary vesicles. The forebrain vesicle forms (1) the telencephalon, with its primitive cerebral hemispheres, and (2) the diencephalon, which develops optic vesicles. The hindbrain vesicle forms (1) the metencephalon, the future pons and cerebellum, and (2) the myelencephalon, or medulla oblongata (Table 18-1).

The basic pattern of the ventricular system is now established. The cavity in each cerebral hemisphere is known as the lateral ventricle. The cavity of the diencephalon is known as the third ventricle. With continued growth, the cavity of the midbrain vesicle becomes small and forms the cerebral aqueduct or aqueduct of Sylvius. The cavity of the hindbrain vesicle forms the fourth ventricle, which is continuous with the central canal of the spinal cord. The lateral ventricles communicate with the third ventricle through the interventricular foramina. The ventricular system and the central canal of the spinal cord are lined with ependyma and are filled with CSF. In the earliest stages, the CSF within the ventricular system is not continuous with that of the subarachnoid space.

Early in development, the embryo is a flat disc, and the neural tube is straight. Later, with the development of the head fold and tail fold, the neural tube becomes curved.

Medulla Oblongata (Myelencephalon)

The walls of the hindbrain vesicle initially show the typical organization seen in the neural tube, with the anterior thickenings, known as the basal plates, and the posterior thickenings, known as the alar plates, being separated by the sulcus limitans (Fig. 18-3). As development proceeds, the lateral walls are moved laterally (like an opening clamshell) at higher levels by the expanding fourth ventricle. As a result, the alar plates come to lie lateral to the basal plates. The neurons of the basal plate form the motor nuclei of cranial nerves (CNs) IX, X, XI, and XII and are situated in the floor of the fourth ventricle medial to the sulcus limitans. The neurons of the alar plate form the sensory nuclei of CNs V, VIII, IX, and X and the gracile and cuneate nuclei. Other cells of the alar plate migrate ventrolaterally and form the olivary nuclei.

Figure 18-2 Division of the forebrain vesicle into the telencephalon and the diencephalon, and the hindbrain vesicle into the metencephalon and myelencephalon. Also shown is the way in which the cerebral hemisphere on each side develops as a diverticulum from the telencephalon.

Table 18-1 Primary Divisions of the Developing Brain

Primary Vesicle	Primary Division	Subdivision	Adult Structures
Forebrain vesicle	Prosencephalon (forebrain)	Telencephalon	Cerebral hemisphere, basal ganglia, hippocampus
		Diencephalon	Thalamus, hypothalamus, pineal body, infundibulum
Midbrain vesicle	Mesencephalon (midbrain)	Mesencephalon (midbrain)	Tectum, tegmentum, crus cerebri
Hindbrain vesicle	Rhombencephalon (hindbrain)	Metencephalon	Pons, cerebellum
		Myelencephalon	Medulla oblongata

Figure 18-3 Development of the medulla oblongata (myelencephalon).

The roof plate becomes stretched into a thin layer of ependymal tissue. The vascular mesenchyme lying in contact with the outer surface of the roof plate forms the pia mater, and the two layers together form the tela choroidea. Vascular tufts of tela choroidea project into the cavity of the fourth ventricle to form the choroid plexus. Between the fourth and fifth months, local resorptions of the roof plate occur; forming paired lateral foramina, the foramina of Luschka, and a median foramen, the foramen of Magendie. These important foramina allow the escape of the CSF, which is produced in the ventricles, into the subarachnoid space (see p. 443).

The floor plate remains narrow and forms the region of the median sulcus. In the marginal layer on the anterior aspect of the medulla, descending axons from the neurons in the motor areas of the cerebral cortex (precentral gyrus) produce prominent swellings called the pyramids.

Pons (Ventral Part of Metencephalon)

The pons arises from the anterior part of the metencephalon (Fig. 18-4), but it also receives a cellular contribution from the alar part of the myelencephalon.

The neurons of the basal plates form the motor nuclei of CNs V, VI, and VII. The neurons of the ventromedial part of each alar plate form the main sensory nucleus of CN V, a sensory nucleus of CN VII, and the vestibular and cochlear nuclei of CN VIII; they also form the pontine nuclei. The axons of the pontine nuclei grow transversely to enter the developing cerebellum of the opposite side, thus forming the transverse pontine fibers and the middle cerebellar peduncle.

Cerebellum (Posterior Part of Metencephalon)

The cerebellum is formed from the posterior part of the alar plates of the metencephalon. On each side, the alar plates bend medially to form the rhombic lips (Fig. 18-5). As alar plates enlarge, the lips project caudally over the roof plate of the fourth ventricle and unite with each other in the midline to form the cerebellum (Fig. 18-6; also see Fig. 18-5). At the 12th week, a small midline portion, the vermis, and two lateral portions, the cerebellar hemispheres, may be recognized. At about the end of the fourth month, fissures develop on the surface of the cerebellum, and the characteristic folia of the adult cerebellum gradually develop.

Figure 18-4 Development of the pons from the anterior part of the metencephalon.

Figure 18-5 Development of the cerebellum. Also shown is the fusion of the rhombic lips in the midline to form the dumbbell-shaped cerebellum.

A

B

Figure 18-6 Sagittal sections of the developing cerebellum.

Figure 18-7 Successive stages in the development of the midbrain.

The neuroblasts derived from the matrix cells in the ventricular zone migrate toward the surface of the cerebellum and eventually give rise to the neurons forming the cerebellar cortex. Other neuroblasts remain close to the ventricular surface and differentiate into the dentate and other deep cerebellar nuclei. With further development, the axons of neurons forming these nuclei grow out into the mesencephalon (midbrain) to reach the forebrain, and these fibers will form the greater part of the superior cerebellar peduncle. Later, the growth of the axons of the pontocerebellar fibers and the corticopontine fibers will connect the cerebral cortex with the cerebellum, and so the middle cerebellar peduncle will be formed. The inferior cerebellar peduncle will be formed largely by the growth of sensory axons from the spinal cord, the vestibular nuclei, and olivary nuclei.

Midbrain (Mesencephalon)

The midbrain develops from the midbrain vesicle, the cavity of which becomes much reduced to form the cerebral aqueduct or aqueduct of Sylvius (Fig. 18-7). The sulcus limitans separates the alar plate from the basal plate on each side, as seen in the developing spinal cord. The neuroblasts in the basal plates will differentiate into the neurons forming the nuclei of CNs III and IV and possibly the red nuclei, the substantia nigra, and the reticular formation. The marginal zone of each basal plate enlarges considerably, thus forming
the basis pedunculi by the descent of nerve fibers from the cerebral cortex to the lower motor centers in the pons and spinal cord-that is, the corticopontine, corticobulbar, and corticospinal tracts.

The two alar plates and the original roof plate form the tectum. The neuroblasts in the alar plates differentiate into the sensory neurons of the superior and inferior colliculi. Four swellings representing the four colliculi appear on the posterior surface of the midbrain. The superior colliculi are associated with visual reflexes, and the inferior colliculi are associated with auditory reflexes.

With further development, the fibers of CN IV emerge on the posterior surface of the midbrain and decussate completely in the superior medullary velum. The fibers of CN III emerge on the anterior surface between the cerebral peduncles.

Forebrain (Prosencephalon)

The forebrain develops from the forebrain vesicle. The roof and floor plates remain thin, whereas the lateral walls become thick, as in the developing spinal cord. At an early stage, a lateral diverticulum called the optic vesicle appears on each side of the forebrain. That part of the forebrain that lies rostral to the optic vesicle is the telencephalon, and the remainder is the diencephalon (Fig. 18-8). The optic vesicle and stalk ultimately will form the retina and optic nerve.

Figure 18-8 Division of the forebrain vesicle into the telencephalon and the diencephalon.

The telencephalon now develops a lateral diverticulum on each side of the cerebral hemisphere, and its cavity is known as the lateral ventricle. The anterior part of the third ventricle, therefore, is formed by the medial part of the telencephalon and ends at the lamina terminalis, which represents the rostral end of the neural tube. The opening into each lateral ventricle is the future interventricular foramen.

Diencephalon Fate

The cavity of the diencephalon forms the greater part of the third ventricle (see Fig. 18-8). Its roof shows a small diverticulum immediately anterior to the midbrain, which will form the pineal body. The remainder of the roof forms the choroid plexus of the third ventricle (Fig. 18-9). In the lateral wall of the third ventricle, the

Figure 18-9 Diagrammatic representation of a coronal section of the cerebral hemispheres showing the developing choroid plexuses in the third and lateral ventricles.

Figure 18-10 Diagrammatic representation of a coronal section of the cerebral hemispheres showing the choroid plexuses in the third and lateral ventricles. Also shown are the caudate and lentiform nuclei and the thalami. The ascending and descending nerve tracts can be seen passing between the masses of gray matter to form the internal capsule.
thalamus arises as a thickening of the alar plate on each side. Posterior to the thalamus, the medial and lateral geniculate bodies develop as solid buds. With the continued growth of the two thalami, the ventricular cavity becomes narrowed, and in some individuals, the two thalami may meet and fuse in the midline to form the interthalamic connection of gray matter that crosses the third ventricle (Fig. 18-10).

The lower part of the alar plate on each side will differentiate into a large number of hypothalamic nuclei. One of these becomes conspicuous on the inferior surface of the hypothalamus and forms a rounded swelling on each side of the midline called the mammillary body.

The infundibulum develops as a diverticulum from the floor of the diencephalon and from it will originate the stalk and pars nervosa of the hypophysis.

Telencephalon Fate

The telencephalon forms the anterior end of the third ventricle, which is closed by the lamina terminalis, while the diverticulum on either side forms the cerebral hemisphere.

Cerebral Hemispheres

Each cerebral hemisphere arises at the beginning of the fifth week of development. As it expands superiorly,
its walls thicken, and the interventricular foramen becomes reduced in size (see Figs. 18-8 to 18-10). The mesenchyme between each cerebral hemisphere condenses to form the falx cerebri. As development proceeds, the cerebral hemispheres grow and expand rapidly, first anteriorly to form the frontal lobes, then laterally and superiorly to form the parietal lobes, and finally posteriorly and inferiorly to produce the occipital and temporal lobes. As the result of this great expansion, the hemispheres cover the midbrain and hindbrain (Fig. 18-11).

The medial wall of the cerebral hemisphere remains thin and is formed by the ependymal cells. This area becomes invaginated by vascular mesoderm, which forms the choroid plexus of the lateral ventricle (see Fig. 18-10). The occipital lobe of the cerebral hemisphere is separated from the cerebellum by mesenchyme, which condenses to form the tentorium cerebelli.

Meanwhile, the matrix cells lining the floor of the forebrain vesicle proliferate, producing large numbers of neuroblasts. These collectively form a projection that encroaches on the cavity of the lateral ventricle and is known as the corpus striatum (see Fig. 18-9). Later, this differentiates into two parts: (1) the dorsomedial portion, the caudate nucleus, and (2) a ventrolateral part, the lentiform nucleus. The latter becomes subdivided

Figure 18-11 Successive stages in the development of the cerebral cortex.
into a lateral part, the putamen, and a medial part, the globus pallidus (see Fig. 18-10). As each hemisphere expands, its medial surface approaches the lateral surface of the diencephalon; thus, the caudate nucleus and thalamus come in close contact.

A further longitudinal thickening occurs in the wall of the forebrain vesicle, and the thickening protrudes into the lateral ventricle and forms the hippocampus.

While these various masses of gray matter are developing within each cerebral hemisphere, maturing neurons in different parts of the nervous system are sending axons either to or from the differentiating cortex. These axons form the large ascending and descending tracts, which, as they develop, are forced to pass between the
thalamus and caudate nucleus medially and the lentiform nucleus laterally. The compact bundle of ascending and descending tracts is known as the internal capsule. The external capsule consists of a few cortical projection fibers that pass lateral to the lentiform nucleus.

Cerebral Cortex

As each cerebral hemisphere rapidly expands, the convolutions or gyri separated by fissures or sulci become evident on its surface. The cortex covering the lentiform nucleus remains as a fixed area called the insula (see Fig. 18-11B). Later, this region becomes buried in
the lateral sulcus as the result of overgrowth of the adjacent temporal, parietal, and frontal lobes.

The matrix cells lining the cavity of the cerebral hemisphere produce large numbers of neuroblasts and neuroglial cells that migrate out into the marginal zone. The remaining matrix cells ultimately will form the ependyma, which lines the lateral ventricle. In the 12th week, the cortex becomes very cellular because of the migration of large numbers of neuroblasts. At term, the neuroblasts have become differentiated and have assumed a stratified appearance as the result of the presence of incoming and outgoing fibers. Different areas of the cortex soon show specific cell types; thus, the motor cortex contains a large number of pyramidal cells, whereas the sensory areas are characterized mainly by granular cells.

Commissures

The lamina terminalis, which is the cephalic end of the neural tube, forms a bridge between the two cerebral hemispheres and enables nerve fibers to pass from one cerebral hemisphere to the other (see Fig. 18-8).

The anterior commissure is the first commissure to develop. It runs in the lamina terminalis and connects the olfactory bulb and the temporal lobe of the cortex on one side with the same structures of the opposite hemisphere.

The fornix is the second commissure to develop and connects the cortex of the hippocampus in each hemisphere.

The corpus callosum, the largest and most important commissure, is the third commissure to develop. Its first fibers connect the frontal lobes of both sides and, later, the parietal lobes. As the corpus callosum increases in size because of increased numbers of fibers, it arches back over the roof of the developing third ventricle.

The remains of the lamina terminalis, which lie between the corpus callosum and the fornix, become stretched out to form a thin septum, the septum pellucidum. The optic chiasma is formed in the inferior part of the lamina terminalis; it contains fibers from the medial halves of the retinae, which cross the midline to join the optic tract of the opposite side and so pass to the lateral geniculate body and the superior colliculus.

Myelination in the Central Nervous System

The myelin sheath in the central nervous system is formed and maintained by the oligodendrocytes of the neuroglia (see p. 54).

Myelination in the spinal cord begins first in the cervical region, and from here, the process extends caudally. The process of myelination begins within the cord at about the fourth month, and the sensory fibers are affected first. The last affected are the descending motor fibers.

Myelination in the brain begins at about the sixth month of fetal life but is restricted to the fibers of the basal ganglia. Later, the sensory fibers passing up from the spinal cord myelinate, but the progress is slow; therefore, at birth, the brain still is largely unmyelinated. Newborns have very little cerebral function; motor reactions such as respiration, sucking, and swallowing are essentially reflex. After birth, the corticobulbar, corticospinal, tectospinal, and corticopontocerebellar fibers begin to myelinate. This process of myelination is not haphazard but systematic, occurring in different nerve fibers at specific times. The corticospinal fibers, for example, start to myelinate at about 6 months after birth, and the process is largely complete by the end of the second year. It is believed that some nerve fibers in the brain and spinal cord do not complete myelination until puberty.

Clinical Notes

Congenital Anomalies

Practically any part of the nervous system can show defects of development, and these produce a wide variety of clinical signs and symptoms. Only the common defects of the central nervous system are considered here. Spina bifida, hydrocephalus, and anencephaly each occur about 6 times $/ 1,000$ births and are therefore the more common congenital anomalies.

Spina Bifida

In spina bifida, the spines and arches of one or more adjacent vertebrae fail to develop (Fig. 18-12). The condition occurs most frequently in the lower thoracic, lumbar, and sacral regions. Beneath this defect, the meninges and spinal cord may or may not be involved in varying degrees. The condition is a result of failure of the mesenchyme, which grows in between the neural tube and the surface
ectoderm, to form the vertebral arches in the affected region. The types of spina bifida are as follows:

1. Spina bifida occulta. The spines and arches of one or more vertebrae, usually in the lumbar region, are absent, and the vertebral canal remains open posteriorly. The spinal cord and nerve roots usually are normal. The defect is covered by the postvertebral muscles and cannot be seen from the surface. A small tuft of hair or a fatty tumor may be present over the defect. Most cases are symptomless and are diagnosed by chance when the vertebral column is x -rayed.
2. Meningocele. The meninges project through the defect in the vertebral arches, forming a cystic swelling beneath the skin and containing CSF, which communicates with the subarachnoid space (Fig. 18-13; also see Fig. 18-12). The spinal cord and nerves usually are normal.

Figure 18-12 Different types of spina bifida.
3. Meningomyelocele. The normal spinal cord, or cauda equina, lies within the meningeal sac, which projects through the vertebral arch defect (see Fig. 18-12). The spinal cord or nerve roots are adherent to the inner wall of the sac.
4. Myelocele. The neural tube fails to close in the region of the defect. An oval raw area is found on the surface; this represents the neural groove whose lips are fused. The central canal discharges clear CSF onto the surface.
5. Syringomyelocele. This condition is rare. A meningomyelocele is present, and in addition, the central canal of the spinal cord at the level of the bony defect is grossly dilated.

Spina bifida occulta is the most common defect. The next most common defect is myelocele, and many afflicted infants are born dead. If the child is born alive, death from infection of the spinal cord may occur within a few days.

Figure 18-13 A meningocele in the lumbosacral region. (Courtesy Dr. L. Thompson.)

Most cases of spina bifida occulta require no treatment. A meningocele should be removed surgically within a few days of birth. Infants with meningomyelocele should also be treated surgically. The sac is opened, and the spinal cord or nerves are freed and carefully replaced in the vertebral canal. The meninges are sutured over the cord and the postvertebral muscles are approximated.

As the result of advances in medical and surgical care, many infants with the severe forms of spina bifida now survive. Unfortunately, these children are likely to have lifelong disabilities and psychosocial problems. The neurologic deficits alone may result in deformation of the limbs and spine and in bladder, bowel, and sexual dysfunction.

Hydrocephalus

Hydrocephalus is an abnormal increase in the volume of CSF within the skull. The condition may be associated with spina bifida and meningocele. Hydrocephalus alone may be caused by stenosis of the cerebral aqueduct or, more commonly, by the normal single channel being represented by many inadequate minute tubules. Another cause, which is progressive, is the overgrowth of neuroglia around the aqueduct. Inadequate development or failure of development of the interventricular foramen, or the foramina of Magendie and Luschka, may also be responsible.

In cases of hydrocephalus with spina bifida, the ArnoldChiari phenomenon may occur. During development, the cephalic end of the spinal cord is fixed by virtue of the brain residing in the skull, and in the presence of spina bifida, the caudal end of the cord may also be fixed. The longitudinal growth of the vertebral column is more rapid and greater than that of the spinal cord, and this results in traction pulling the medulla and part of the cerebellum through the foramen magnum. This displacement of the hindbrain downward obstructs CSF flow through the foramina in the roof of the fourth ventricle.

Hydrocephalus may occur before birth and if it is advanced, it could obstruct labor. It usually is noticed during the first few months of life because of the enlarging head, which may attain a huge size, sometimes measur-
ing more than 30 in in diameter (Fig. 18-14). The cranial sutures are widely separated, and the anterior fontanelle is much enlarged. The veins of the scalp are distended, and the eyes look downward. CN paralyses are common. The ventricles of the brain become markedly dilated. This ventricular expansion occurs largely at the expense of the white matter, and the neurons of the cerebral cortex are mostly spared. This results in the preservation of cerebral function, but the destruction of the tracts, especially the corticobulbar and corticospinal tracts, produces a progressive loss of motor function.

If the condition is diagnosed by sonography while the fetus is in utero, it is possible to perform prenatal surgery with the introduction of a catheter into the ventricles of the brain and CSF drainage into the amniotic cavity. Should the diagnosis be delayed until after birth, a drainage tube fitted with a nonreturn valve can connect the ventricles to the internal jugular vein in the neck.

Anencephaly

In anencephaly, the greater part of the brain and the vault of the skull are absent (Fig. 18-15). The anomaly is caused by the failure of the rostral end of the neural tube to develop and as a consequence, its cavity remains open. In place of the normal neural tissue are thin-walled vascular channels resembling the choroid plexus and masses of neural tissue. Although the eyes are present, the optic nerves are absent. The condition commonly involves the spinal cord, and the neural tube remains open in the cervical region. The condition is commonly diagnosed before birth with sonography or x-ray studies. Most anencephalic infants are stillborn or die shortly after birth.

Neural Defect Prevention

The development and closure of the neural tube are normally completed within 28 days. In practical terms, this means that neural tube defects have occurred before many women are aware that they are pregnant.

Extensive clinical research has demonstrated that environmental and genetic factors have a joint role in the

Figure 18-14 Hydrocephalus. Note the large size of the head. (Courtesy Dr. G. Avery.)
causation of neural tube defects. The increased risk of neural defects in the lower socioeconomic groups suggests that poor nutrition may also be an important factor. More recent clinical research has demonstrated that the risk of recurrent neural defects is significantly reduced among women who take $4,000 \mathrm{mg}$ of folic acid daily compared with women who do not. Further studies have shown that a daily dose that is 10 times lower is effective in preventing the defect. These findings have stimulated much new research to identify the genetic and biochemical bases of neural tube defects.

Because as many as 50% of pregnancies in the United States are unplanned and since the neural tube closes before most women know that they are pregnant, physicians should strongly urge women capable of becoming pregnant to consume at least 400 mg of folic acid per day, preferably as a multivitamin supplement.

Embryonic Stem Cell Treatment of Neurologic Diseases

Freed et al. (2001) reported treating patients with severe Parkinson disease by transplanting precursors of dopamine nerve cells in fragments of mesencephalon isolated from human fetuses 7 to 8 weeks after conception. The results showed that the transplants survived and produced some clinical benefit in younger but not in older patients. It was demonstrated that the cells survived and differentiated, as demonstrated by positron emission tomography or by histologic examination (see Fig. 10-9). In view of the large numbers of patients with Parkinson disease worldwide, it is unlikely that transplantation of embryonic fragments would be a practical therapy.

Embryonic stem cells have the unique property of being able to produce all adult cell types, including those of the nervous system. The successful transplantation of embryonic stem cells has been achieved in animal models of Parkinson disease, motor neuron disease, and spinal cord injury. The great promise of these results has stimulated the imagination of scientists and patients. The use of cell lines derived from human embryonic stem cells, however, poses profound ethical questions.

Embryonic stem cells are derived from the inner cell mass of the blastocyst, the stage at which the developing embryo is implanted into the uterus. Human embryonic stem cells were first successfully harvested by Thomson et al. in 1998. The isolated inner cell mass cells were then cultured in the laboratory. Although substantial advances have been made in this field, enormous efforts must now be devoted to this subject so that we can improve the health of patients with chronic debilitating neurologic diseases.

Figure 18-15 Example of anencephaly. Note that the greater part of the brain and the vault of the skull are absent. In the posterior view, the remainder of the brain is exposed. (Courtesy Dr. M. Platt.)

Key Concepts

Spinal Cord

- In early development, the neural tube dilates at the cephalic end to form the forebrain, midbrain, and hindbrain vesicles. The rest of the tube elongates to form the spinal cord.
- Matrix cells in the epithelial walls of the neural tube are referred to as the ventricular zone. Repeated divisions of the matrix cells result in increased length and diameter of the neural tube.
- Eventually, neuroblasts are formed and migrate to the intermediate zone to form the gray matter of the spinal cord.
- The cells of the intermediate zone grow fibers that extend and form a layer external to the intermediate zone, called the marginal zone. These fibers become myelinated and form the white matter of the spinal cord.
- Matrix cells will also give rise to astrocytes and oligodendrocytes. Microglial cells migrate in from the mesenchyme.
- The layers of the meninges are formed from the mesenchyme that surrounds the neural tube.

Brain

- Once the neural tube closes, the three primary vesicles complete their development.
- The forebrain vesicle forms the telencephalon, which matures into the cerebral hemisphere, basal ganglia, and hippocampus; and the diencephalon, which becomes the thalamus, hypothalamus, pineal body, and infundibulum.
- The midbrain vesicle forms the tectum, tegmentum, and crus cerebri components of the midbrain.
- The hindbrain vesicle forms the metencephalon, which includes the pons and cerebellum, and the myelencephalon, which includes the medulla oblongata.

? Clinical Problem Solving

1. A 10-year-old boy fell off his bicycle and hurt his back. Following a complete physical examination in the emergency department, nothing abnormal is found. An x-ray examination, however, reveals the complete absence of the spine and laminae of the fifth lumbar vertebra. How do you explain the presence of the bony defect?
2. A male child is delivered normally to a 20 -year-old woman. A pediatrician examines the infant and finds a large swelling in the lower part of his back over the fourth and fifth lumbar vertebrae. On closer examination, the summit of the swelling has an oval raw area from which a clear fluid is discharging. The legs show hyperextension of the knees, and the feet are held in the position of talipes calcaneus. What is the
diagnosis? How do you explain the congenital defect on the back?
3. A 2-month-old girl is taken to a pediatrician because her mother is concerned about the size of her head. "She looks top-heavy," she says. Examination shows the head to be large and globular in shape. The anterior fontanelle is greatly enlarged and extends posteriorly to the enlarged posterior fontanelle. The enlarged head contrasts markedly with the small face. Neurologic examination reveals some evidence of optic atrophy on both sides, and tone is increased in the muscles of both lower limbs. What is the diagnosis? How do you explain this congenital anomaly? What is the prognosis if the patient is left untreated?

Answers and Explanations to Clinical Problem Solving

1. This patient has spina bifida occulta involving the fifth lumbar vertebra. The condition is a result of failure of the mesenchyme to grow between the neural tube and the surface ectoderm and form the vertebral arch; the vertebral canal remains open posteriorly. The defect, therefore, has existed since before birth and could not be seen or felt on physical examination because it was covered by the postvertebral muscles. The spinal cord and spinal nerve roots usually are normal. No treatment is required.
2. This child has a myelocele. In addition to the failure of the formation of the vertebral arches of the fourth and fifth lumbar vertebrae, the neural tube failed to close in this region. The oval raw area seen in this patient is the neural groove whose lips have not united. The central canal is discharging clear cerebrospinal fluid onto the skin surface. The deformities of the knee joints and feet are the result of the maldevelopment of the spinal cord in the lumbar region, with consequent interference with the innervation of certain muscle groups in the legs.
3. This child has hydrocephalus. A postmortem examination performed 1 year later showed that the cerebral aqueduct was not normally developed and consisted of a number of small tubules. This had resulted in the excessive accumulation of cerebrospinal fluid within the lateral and third ventricles of the brain. The distention of the ventricles, with the consequent enlargement of the brain and increased intracranial pressure, forced apart the bones of the cranial vault so that the head became greatly enlarged. The optic atrophy probably was caused by the stretching of the optic nerve on each side. The increased muscle tone of the lower limbs was almost certainly the result of destruction of the corticospinal and other descending tracts by the expanding lateral ventricles. Although in some cases the head ceases to enlarge spontaneously, in most patients the hydrocephalus is progressive, and death ultimately occurs. Surgical treatment of hydrocephalus may be attempted.

Review Questions

Directions: Each of the numbered items in this section is followed by answers. Select the ONE lettered answer that is CORRECT.

1. The following statements concern the neural tube:
(a) It is lined by stratified squamous cells.
(b) The neuroblasts migrate medially to form the intermediate zone.
(c) The repeated division of the matrix cells does not increase the length and diameter of the tube.
(d) The ventricular zone will form the gray matter of the spinal cord.
(e) The nerve fibers in the marginal zone become myelinated and form the white matter of the spinal cord.
2. The following statements concern the neural crest cells:
(a) They are formed from the medial margin of the neural plate.
(b) They give rise to the posterior root ganglia.
(c) They do not form the neurons of the autonomic ganglia.
(d) The Schwann cells of peripheral nerves are not formed from neural crest cells.
(e) They form the cells of the suprarenal cortex.
3. The following statements concern the developing spinal cord:
(a) The alar plates form the neurons in the anterior gray columns.
(b) The nerve cells of the sympathetic outflow are not formed from the basal plates.
(c) In the adult, the lower end of the spinal cord lies at the level of the lower border of the first lumbar vertebra.
(d) At birth, the lower end of the spinal cord lies at the level of the third sacral vertebra.
(e) The meninges surrounding the spinal cord are developed from the endoderm.
4. The following statements concern the development of the brainstem:
(a) The cerebellum is formed from the dorsal part of the alar plates of the metencephalon.
(b) The neurons of the deep cerebellar nuclei are derived from the matrix cells lining the cavity of the midbrain vesicle.
(c) The neuroblasts in the dorsal plates will form the nuclei of the trochlear and oculomotor nerves.
(d) The neuroblasts of the superior and inferior colliculi are also formed from the neurocytes in the basal plates.
(e) The pons arises from the alar part of the metencephalon with cellular contributions from the alar part of the myelencephalon.
5. The following statements concern the fate of the forebrain vesicle:
(a) The optic vesicle grows out of the midbrain vesicle.
(b) The thalamus is formed from the alar plates in the medial walls of the diencephalon.
(c) The lamina terminalis is formed from the rostral end of the diencephalon.
(d) The pars nervosa of the hypophysis is formed from the floor of the diencephalon.
(e) The hypothalamic nuclei are formed from the basal plates of the diencephalon.
6. The following statements concern the development of the cerebral hemispheres:
(a) The corpus striatum is formed from the proliferation of the matrix cells lining the roof of the forebrain vesicle.
(b) The interventricular foramen is formed by the cavity of the diencephalon.
(c) The choroid plexus of the lateral ventricle is formed by vascular ectoderm covered by ependymal cells.
(d) The internal capsule is formed by the developing ascending and descending tracts growing between the developing thalamus and caudate nucleus medially and the lentiform nucleus laterally.
(e) The cortical neurons develop in situ and do not migrate out laterally from the matrix cells lining the cavity of the cerebral hemisphere.
7. The following statements concern the development of myelination in the brain:
(a) Myelination begins at birth.
(b) The sensory fibers are myelinated last.
(c) The process of myelination is haphazard.
(d) Myelination of the nerve tracts is largely complete by the fourth year of life.
(e) Myelination is carried out by oligodendrocytes and not by neurons.
8. The following statements concern the condition of spina bifida:
(a) It is one of the more common congenital anomalies of the central nervous system.
(b) The most common form of spina bifida is syringomyelocele.
(c) The condition occurs most often in the cervical and upper thoracic regions.
(d) In a myelocele, the neural tube closes in the region of the defect.
(e) Most cases of spina bifida occulta require explorative surgery.

Directions: Each case history is followed by questions. Read the case history, then select the ONE BEST lettered answer.

A 6-month-old girl was seen by the plastic surgeon because of the presence of a swelling at the root of the nose. The mother said that she had noticed the swelling when the child was born and that since then, it had gradually increased in size.
9. The surgeon examined the child and found the following likely signs except:
(a) The swelling was situated at the root of the nose in the midline.
(b) The swelling was located between the frontal and nasal bones.
(c) The swelling was fluctuant and, on gentle pressure, could be reduced in size.
(d) The swelling was pulsatile, and the pulse coincided with the heart rate.
(e) The pulse did not coincide with the pulse felt over the anterior fontanelle of the skull.
10. The neurosurgeon was consulted, and the following possible additional findings were ascertained except:
(a) A lateral radiograph of the skull revealed a defect in the membranous bones involving the nasal process of the frontal bone.
(b) The defect in the membranous bones is known as cranioschisis.
(c) The condition was associated with a cephalic meningocele.
(d) There was a herniation of the meninges through the defect in the skull.
(e) Brain tissue is never found within the hernia.

Answers and Explanations to Review Questions

1. E is correct. The nerve fibers in the marginal zone of the developing neural tube become myelinated and form the white matter of the spinal cord. A. The wall of the neural tube is formed of a single layer of pseudostratified columnar epithelial cells (see Fig. 18-1). B. The neuroblasts migrate peripherally to form the intermediate zone (see Fig. 18-1). C. The repeated division of the matrix cells of the neural tube results in an increase in the length and diameter of the tube. D . The intermediate zone of the neural tube will form the gray matter of the spinal cord.
2. B is correct. The neural crest cells give rise to the posterior root ganglia (see Fig. 1-18). A. The neural
crest cells are formed from the lateral margin of the neural plate (see Fig. 1-18). C. The neural crest cells form the neurons of the autonomic ganglia (see Fig. 1-18). D. The Schwann cells of peripheral nerves are formed from neural crest cells (see Fig. 1-18). E. The neural crest cells form the cells of the suprarenal medulla (see Fig. 1-18).
3. C is correct. In the adult, the lower end of the spinal cord lies at the level of the lower border of the first lumbar vertebra. A. The alar plates form the neurons in the posterior gray columns. B. The nerve cells of the sympathetic outflow are formed from the basal plates. D. At birth, the lower end of
the spinal cord lies at the level of the third lumbar vertebra. E. The meninges of the spinal cord are developed from the mesenchyme that surrounds the neural tube.
4. A is correct. The cerebellum is formed from the dorsal part of the alar plates of the metencephalon (see Fig. 18-6). B. The neurons of the deep cerebellar nuclei are derived from the matrix cells lining the cavity of the hindbrain vesicle. C. The neuroblasts in the basal plates will form the nuclei of the trochlear and oculomotor nerves. D. The neuroblasts of the superior and inferior colliculi are formed from the neurocytes in the alar plates (see Fig. 18-8). E. The pons arises from the anterior part of the metencephalon, with cellular contributions from the alar part of the myelencephalon.
5. D is correct. The pars nervosa of the hypophysis cerebri is formed from the floor of the diencephalon. A. The optic vesicle grows out of the forebrain vesicle (see Fig. 18-3). B. The thalamus is formed from the alar plates in the lateral walls of the diencephalon (see Fig. 18-10). C. The lamina terminalis is formed from the rostral end of the telencephalon. E. The hypothalamic nuclei are formed from the alar plates of the diencephalon.
6. D is correct. The internal capsule is formed by the developing ascending and descending tracts growing between the developing thalamus and caudate nucleus medially and the lentiform nucleus laterally (see Fig. 18-11). A. The corpus striatum is formed from the proliferation of the matrix cells lining the floor of the forebrain vesicle. B. The interventricular foramen is formed by the cavity of the telencephalon (see Fig. 18-11). C. The choroid plexus of the lateral ventricle is formed by vascular mesenchyme covered by ependymal cells. E. The
neurons of the cerebral cortex develop from matrix cells lining the cavity of the cerebral hemisphere. These cells produce large numbers of neuroblasts that migrate out into the marginal zone.
7. E is correct. In the developing brain, myelination is carried out by oligodendrocytes and not by neurons. A. In the developing brain, myelination begins at about the sixth month of fetal life. B. In the developing brain, the sensory fibers are myelinated first. C. Myelination of the nerve tracts is not haphazard but systematic, occurring in different nerve fibers at specific times. D. Myelination of the nerve tracts is largely complete by the end of the second year.
8. A is correct. Spina bifida is one of the more common congenital anomalies of the central nervous system. B. The most common form of spina bifida is spina bifida occulta (see Fig. 18-13). C. Spina bifida occurs most often in the lower thoracic, lumbar, and sacral regions. D. In a myelocele, the neural tube fails to close in the region of the defect (see Fig. 18-13). E. Most cases of spina bifida occulta require no treatment.
9. E is the exception. In a cephalic meningocele, the cerebrospinal fluid (CSF) within the swelling is in direct communication with that in the subarachnoid space. The pulsation of the swelling is produced by the pulse wave of the cerebral arteries through the CSF. This pulse wave will coincide with the pulse felt over the anterior fontanelle of the skull.
10. E is the exception. Cranioschisis is characterized by a defect in the membranous bones of the skull through which meninges, or meninges and neural tissue may protrude. The defect usually occurs in the midline in the occipital region or between the frontal and nasal bones. The condition is probably the result of anomalous formation and separation of the neural tube from the surface ectoderm of the embryo.

Appendix

NEUROANATOMICAL DATA OF CLINICAL SIGNIFICANCE AND CLINICAL NEUROANATOMY TECHNIQUES

Baseline of the Skull

The baseline of the skull extends from the lower margin of the orbit backward through the upper margin of the external auditory meatus. The cerebrum lies entirely above the line, and the cerebellum lies in the posterior cranial fossa below the posterior third of the line (Fig. A-1).

Falx Cerebri, Superior Sagittal Sinus, and the Longitudinal Cerebral Fissure Between the Cerebral Hemispheres

The position of the falx cerebri, superior sagittal sinus, and the longitudinal cerebral fissure between the cerebral hemispheres can be indicated by passing a line over the vertex of the skull in the sagittal plane that joins the root of the nose to the external occipital protuberance.

Parietal Eminence

The parietal eminence is a raised area on the lateral surface of the parietal bone that can be felt about 2 in (5 cm) above the auricle. It lies close to the lower end of the central cerebral sulcus of the brain.

Pterion

The pterion is the point where the greater wing of the sphenoid bone meets the anteroinferior angle of the parietal bone. Lying $11 / 2$ in (4 cm) above the midpoint of the zygomatic arch, it is not marked by an eminence or a depression, but it is important since the anterior branches of the middle meningeal artery and vein lie beneath it.

Intracranial Hematoma Treatment

Cranial decompression is performed in a patient with a history of progressive neurologic deterioration and signs of brain herniation, despite adequate medical treatment. The presence of a hematoma should be confirmed by a computed tomography scan, if possible.

Temporal Burr Hole

1. The patient is placed in a supine position with the head rotated so that the side for the burr hole is
uppermost. For example, in a patient with a rightsided fixed and dilated pupil, indicating herniation of the right uncus with pressure on the right oculomotor nerve, a hematoma on the right side must be presumed, and a burr hole is placed on the right side.
2. The temporal skin is shaved and prepared for surgery in the usual way.
3. A 3 -cm vertical skin incision is made two fingerbreadths anterior to the tragus of the ear and three fingerbreadths above this level (Fig. A-2A).
4. The following structures are then incised:
a. Skin.
b. Superficial fascia containing small branches of the superficial temporal artery.
c. Deep fascia covering the outer surface of the temporalis muscle.
d. The temporalis muscle is then incised vertically down to the periosteum of the squamous part of the temporal bone.
e. The temporalis muscle is elevated from its attachment to the skull, and a retractor is positioned (some muscular bleeding will be encountered).
f. A small hole is then drilled through the outer and inner tables of the skull at right angles to the skull surface, and the hole is enlarged with a burr (unless a blood clot is present between the inner table and the endosteal layer of dura).
g. The white meningeal layer of dura is flexible and slightly compresses with gentle pressure.
h. The hole may be enlarged with a curette, and bleeding from the diploe may be controlled with bone wax.

The surgical wound is closed in layers with interrupted sutures placed in the temporalis muscle, the deep fascia covering the temporalis muscle, and the scalp.

Epidural Hematoma Burr Hole

Once the inner table of the squamous part of the temporal bone (or the anterior inferior angle of the parietal bone) is pierced with a small bit and enlarged with a burr, the dark red clotted blood beneath the endosteal layer of dura is usually easily recognized. However, bright red liquid blood means that the middle meningeal artery or one of its branches is bleeding. The meningeal artery is located deep to the clot and between the endosteal layer of dura and the meningeal layer of dura or in the substance of the endosteal layer of dura; or it may lie in a tunnel of bone.

Figure A-1 Surface landmarks on the right side of the head. The relation of the middle meningeal artery and the brain to the surface of the skull is shown.

Subdural Hematoma Burr Hole

When the squamous part of the temporal bone is penetrated, as described earlier, the endosteal layer of dura will be exposed. In this case, there is no blood clot between the endosteal layer of dura and the meningeal layer of dura, but both fused layers of dura will be dark bluish. The dura (endosteal and meningeal layers) is gently incised to enter the space between the meningeal layer of dura and the arachnoid mater. The subdural blood usually gushes out, leaving the unprotected brain covered only by arachnoid and pia mater in the depths of the hole.

Ventriculostomy

Ventriculostomy is indicated in acute hydrocephalus, in which cerebrospinal fluid flow is suddenly obstructed.

Anatomy of the Technique

To perform a ventriculostomy, the needle is inserted into the lateral ventricle through either a frontal or parietal burr hole. The anatomy of these burr holes has been described previously. The needle is inserted through the burr hole using the following anatomical landmarks.

1. Frontal Approach. The needle is inserted through the frontal burr hole and is directed downward and forward in the direction of the inner canthus of the ipsilateral eye (Fig. A-3).
2. Parietal Approach. The needle is inserted through the parietal burr hole and is directed downward and forward in the direction of the pupil of the ipsilateral eye.
The needle is inserted to a depth of about 2 in (5.5 cm) from the skull opening; in cases of chronic hydrocephalus with gross dilatation of the ventricles, the depth of penetration to the ventricular cavity may be much less.

Vertebral Numbers and Spinal Cord Segments

Table A-1 relates which vertebral body is related to a particular spinal cord segment.

Segmental Innervation of Muscles

Test for the integrity of the segmental innervation of muscles by performing the following simple muscle reflexes.

Biceps brachii tendon reflex C5-C6 (flexion of the elbow joint by tapping the biceps tendon).
Triceps tendon reflex C6-C7 and C8 (extension of the elbow joint by tapping the triceps tendon).
Brachioradialis tendon reflex $\mathrm{C} 5-\mathrm{C} 6$ and C 7 (supination of the radioulnar joints by tapping the insertion of the brachioradialis tendon).
Abdominal superficial reflexes (contraction of underlying abdominal muscles by stroking the skin). Upper

Figure A-2 A: Surface landmarks for a temporal burr hole. B: The vertical incision passes through the temporalis muscle down to bone. The middle meningeal artery lies between the endosteal and meningeal layers of dura and is embedded in the endosteal layer of dura or lies in a bony tunnel.

Figure A-3 Ventriculostomy. Needles passing through frontal or parietal burr holes to enter the lateral ventricle area are shown. The needle is inserted to a depth of about 2 in (5.5 cm) from the skull opening in order to enter the lateral ventricle.
abdominal skin T6-T7; middle abdominal skin T8-T9; lower abdominal skin T10-T12.
Patellar tendon reflex (knee jerk) L2, L3, and L4 (extension of knee joint on tapping the patellar tendon).
Achilles tendon reflex (ankle jerk) S1 and S2 (plantar flexion of ankle joint on tapping the Achilles ten-don-tendo calcaneus).

Relationship Between Possible Intervertebral Disc Herniations and Spinal Nerve Roots

These are shown for the cervical and lumbar regions in Figure A-4.

A correlation between the nerve roots involved, the pain dermatome, the muscle weakness, and the missing or diminished reflex is shown in Table A-2.

Table A-1 Correlation of Vertebral Body With Spinal Cord Segment

Vertebra(e)	Spinal Segment(s)
Cervical vertebrae	Add 1
Upper thoracic vertebrae	Add 2
Lower thoracic vertebrae (7-9)	Add 3
Tenth thoracic vertebra	L1-L2 cord segments
Eleventh thoracic vertebra	L3-L4 cord segments
Twelfth thoracic vertebra	L5 cord segment
First lumbar vertebra	Sacral and coccygeal cord segments

Surface Landmarks for Performing a Lumbar Puncture

To perform a lumbar puncture, the patient is placed in the lateral prone position or in the upright sitting position. The trunk is then bent well forward to open up to the maximum, the space between adjoining laminae in the lumbar region. A groove runs down the middle of the back over the tips of the spines of the thoracic and the upper four lumbar vertebrae. The spines are made more prominent when the vertebral column is flexed. An imaginary line joining the highest points on the iliac crests passes over the fourth lumbar spine. With a careful aseptic technique and under local anesthesia, the spinal tap needle-fitted with a stylet-is passed into the vertebral canal above or below the fourth lumbar spine.

The following structures are pierced by the needle before it enters the subarachnoid space (Fig. A-5):

1. Skin
2. Superficial fascia
3. Supraspinous ligament
4. Interspinous ligament
5. Ligamentum flavum
6. Areolar tissue containing the internal vertebral venous plexus in the epidural space
7. Dura mater
8. Arachnoid mater

The depth to which the needle will have to pass will vary from an inch or less in children to as much as 4 in $(10 \mathrm{~cm})$ in obese adults.

The pressure of the cerebrospinal fluid in the lateral recumbent position is normally about 60 to 150 mm of water.

See Table 16-1 for physical characteristics and composition of the cerebrospinal fluid.

Figure A-4 A,B: Posterior views of vertebral bodies in the cervical and lumbar regions showing the relationship that might exist between herniated nucleus pulposus (pink) and spinal nerve roots. Note that there are eight cervical nerves and only seven cervical vertebrae. In the lumbar region, for example, the emerging L4 nerve roots pass out laterally close to the pedicles of the fourth lumbar vertebra and are not related to the intervertebral disc between the fourth and the fifth lumbar vertebrae. Pressure on the L5 motor nerve root produces weakness of plantar flexion of the ankle joint.

Table A-2 Correlation Between Nerve Roots, Pain Dermatome, Muscle Weakness, and Missing or Diminished Reflex

Root Injury	Dermatome Pain	Muscles Supplied	Movement Weakness	Reflex Involved
C5	Lower lateral aspect of upper arm	Deltoid and biceps	Shoulder abduction, elbow flexion	Biceps
C6	Lateral aspect of forearm	Extensor carpi radialis longus and brevis	Wrist extensors	Brachioradialis
C7	Middle finger	Triceps and flexor carpi radialis	Extension of elbow and flexion of wrist	Triceps
C8	Medial aspect of forearm	Flexor digitorum superficialis and profundus	Finger flexion	None
L1	Groin	Iliopsoas	Hip flexion	Cremaster
L2	Anterior aspect of thigh	Iliopsoas, sartorius, hip adductors	Hip flexion, hip adduction	Cremaster
L3	Medial aspect of knee	lliopsoas, sartorius, quadriceps, hip adductors	Hip flexion, knee extension, hip adduction	Patellar
L4	Medial aspect of calf	Tibialis anterior, quadriceps	Foot inversion, knee extension	Patellar
L5	Lateral part of lower leg and dorsum of foot	Extensor hallucis longus, extensor digitorum longus	Toe extension, ankle dorsiflexion	None
S1	Lateral edge of foot	Gastrocnemius, soleus	Ankle plantar flexion	Ankle jerk
S2	Posterior part of thigh	Flexor digitorum longus, flexor hallucis longus	Ankle plantar flexion, toe flexion	None

Figure A-5 A: Structures penetrated by the spinal tap needle before it reaches the dura mater. B: Important anatomic landmarks when performing a spinal tap. Although this is usually performed with the patient in a lateral recumbent position with the vertebral column well flexed, the patient may be placed in the sitting position and bent well forward.

Index

Page numbers followed by " f " indicate figures. Page numbers followed by " f " indicate tables.

A

Abdominal aortic aneurysm, 479
Abdominal superficial reflexes, 100, 508-510
Abdominal systemic arteries, effect of autonomic system on, 397t
Abducens nerve, 204-205, 335, 336f, 351
course, 336f, 337
distribution, $336 f$
nucleus, $335,336 f$
nucleus of, 205
Abnormal involuntary movements, 369
Absolute refractory period, 45
Accessory nerves, 204, 345, 353
cranial root, $345,346 f$
distribution of, 347f
function, $325 t$
spinal root, 345-346, 346f
Accessory nucleus, 138
Accommodation reflex, 406
Acetylcholine (ACh), 54, 63, 94, 115, 301, 388, 392-393
gated channels, 96
Acetylcholinesterase (AChE), 53f, 54, 96, 115
Achilles tendon reflex, 101, 510
Action potential (AP), 44-45
Acute esophagitis, 410
Acute labyrinthitis, 353
Adenosine triphosphate (ATP), 394
Adie tonic pupil syndrome, 408
Adiposogenital dystrophy syndrome, 267
Adrenergic endings, 393
Adrenergic receptor blockade, 394
Adult skull, 20
Afferent cerebellar pathways
anterior spinocerebellar tract, 237-238, $238 t$
from cerebral cortex, 236-237, 236f, 238t
cerebro-olivocerebellar pathway, 236, $238 t$
cerebroreticulocerebellar pathway,
236-237, $238 t$
corticopontocerebellar pathway, 236, $238 t$
cuneocerebellar tract, 238, $238 t$
posterior spinocerebellar tract, $238,238 t$
from spinal cord, 237-238, 237f, $238 t$
from vestibular nerve, $238,238 t$
Afferent fibers, 12, 81, 234
Afferent nerve fibers, 312,376 - $377,378 f, 378 t$,
388f, 390
Agranular type of cortex, 283
Agraphia, 291
Alar plate, 489-490
Albuterol, 393
Alcoholic headache, 429
Alexia, 291
Alpha (α) receptors, 393
Alpha rhythm, 292
Alveolar arch, 187
Alveolar process, 187
Alveus, 263, 303, 303f, 440
Alzheimer disease, 269-272
cholinesterase inhibitors for, 272
diagnosis of, 272
signs for, 272
Amygdalohypothalamic fibers, 376

Amygdaloid complex destruction, 306
Amygdaloid nucleus, 261, 303, 311-312, 311 f 440
Amyotrophic lateral sclerosis (Lou Gehrig disease), 171
Anal canal involuntary internal sphincter, effect of autonomic system on, $397 t$, 402, 403 f
Analgesic system, 146
Anencephaly, 500, 501t
Angular gyrus, lesions of, 291
Ankle jerk, 101
Annulus fibrosus, 135
Anorexia nervosa, 373
ANS. See Autonomic nervous system
Ansa lenticularis, 314
Anterior ascending ramus, 256
Anterior cerebral artery, 255, 465
occlusion of, 472
Anterior cerebral vein, 470
Anterior clinoid process, 192
Anterior cochlear nuclei, 203, 207
Anterior columns of fornix, 254, 439
Anterior commissure, 254, 262, 498
Anterior communicating artery, 465
Anterior cord syndrome, 168, $169 f$
Anterior corticospinal tract, 155
Anterior cranial fossa, 191-192
Anterior external arcuate fibers, 196, 203
Anterior fontanelle, 191
Anterior gray column, 4, 138-139
Anterior gray commissure, 141
Anterior horizontal ramus, 256
Anterior horn of ventricles, 436, 439
floor of, 439
medial wall of, 439
roof of, 439
Anterior inferior cerebellar artery, 468
Anterior intercavernous sinuses, 424
Anterior lobes of cerebellum, 229
Anterior longitudinal ligament, 135
Anterior median fissure of spinal cord, 196, 489, 489 f
Anterior nerve cell groups, 138-139
Anterior neuropore, 15
Anterior or motor roots, 4
Anterior pituitary hormone, $380 t$
Anterior radicular artery, 472
Anterior ramus, 13
Anterior root, 12, 80
Anterior spinal artery, 466, 472
Anterior spinocerebellar tract, 149, 204, 208
Anterior spinothalamic tract, 146-147, 204 injury, 163
Anterior temporal cortex, 289
Anterior thalamic nuclei, 365
Anterior white column, 4
Anterior white matter, 141
Anterograde amnesia, 305
Anterograde transport, 49
fast, 49
slow, 49
Anticholinesterases, 115

Aortic arch reflexes, 406
Appendicular pain, 410
Arachnoid granulations, 424f, 425, 450, 451f
Arachnoid mater, 4
brain, 419f-420f, 422f, 424f-425f, 425
spinal cord, 426, $426 f$
Arachnoid villi, 422, 425
Arbor vitae, 231, 234
Arcuate eminence, 194
Area postrema, 446
Area vestibuli, 205
Argyll Robertson pupil, 408
Arnold-Chiari phenomenon, 215, 215f, 500
Arrector pili muscle, effect of autonomic system on, $397 t$
Arterial lumen blockage, diseases resulting in, 473-474
Arterial wall disease, 473
Arteries of brain, 464-469
anterior cerebral artery, 465
anterior communicating artery, 465
anterior inferior cerebellar artery, 468
anterior spinal artery, 466
basilar artery, 466-468
central branches, 465,468
cerebral arteries
areas supplied by, $467 f$
nerve supply of, 468-469
choroidal artery, 464-465
circle of Willis, 464, 468
cortical branches, 465, 468
of inferior surface of brain, $466 f$
internal carotid artery, 464-465, 465f
labyrinthine artery, 467
medullary arteries, 467
meningeal branches, 466
middle cerebral artery, 465, $468 f$
ophthalmic artery, 464
pontine arteries, 467
posterior cerebral artery, 468
posterior communicating artery, 464
posterior inferior cerebellar artery, 466
posterior spinal artery, 466
to specific brain areas, 468
superior cerebellar artery, 468
vertebral artery, 466-468
Articular processes, 16, 133-135, $134 f$
Articular tubercle, 191
Ascending pathways, 150-151
Ascending tracts, 142-152
anatomical organization, 142-152
development of, 497
functions
ascending pathways, 150-151
light touch and pressure pathways, 143t, 146-147, 147f
muscle joint sense pathways, $143 t$,
147-150, 149t
pain control, 146
painful and thermal sensations, 142-145, $143 t$
perception of pain, 145-146
visceral sensory tracts, 149t, 151-152

Association cortex, 287-289
Association fibers, 264
Astereognosis, 291
Astrocytes, 488
fibrous, 55
functions, 55-58
as phagocytes, 57
processes of, 55
protoplasmic, 55
role in blood-brain barrier, 58
storing of glycogen, 57
Ataxia, 241
Atherosclerotic parkinsonism, 317
Athetosis, 117, 167, 318
Atlanto-axial joints, 135
Atlanto-occipital joints, 135
Atonic bladder, 407
ATP. See Adenosine triphosphate
Atrophy, 267
Atropine, 63, 115, 394
Atropine methylnitrate, 457
Auditory afferents, 376
Auditory tube, 191
Automatic reflex bladder, 407
Autonomic ganglia, 15, 81
Autonomic ganglion, 390-391, 391f
Autonomic nerve plexuses, 390
Autonomic nervous system (ANS), 2, 83, 387-410, $397 t$
adrenergic receptor blockade, 394
autonomic ganglia, 390-391, 391f
causalgia, 410
cholinergic receptor blockade, 394
diseases to, 408
Adie tonic pupil syndrome, 408
Argyll Robertson pupil, 408
caused by anticholinesterase agents, 409
caused by black widow spider venom, 408
caused by botulinum toxin, 408
diabetes mellitus, 408
Frey syndrome, 408
Hirschsprung disease, 408
Horner syndrome, 408
enteric nervous system, 394-395
fast synaptic potentials, 392, 392f
functions, 395
ganglion-blocking agents, 392-393
ganglion-stimulating agents, 392
higher control, 394, 394f
inhibitory synaptic potentials, $392,392 f$
injuries to, 406
defecation, 407
degeneration of autonomic nerves, 407
ejaculation, 408
erection, 407
parasympathetic, 407
regeneration of autonomic nerves, 407
sympathetic, 406-407
urinary bladder dysfunction, 407
innervations, 396-405, 397t
large autonomic plexuses, 390
organization, 387-390
parasympathetic part, 389f, 390
sympathetic part, 388-390, 389f
parasympathetic, 2
physiologic reflexes, 406
postganglionic nerve endings, 393
postganglionic transmitters, 393-394, 393f
preganglionic transmitters, 391f, 392, 392f
referred visceral pain, 409-410, 409f
appendicular pain, 410
cardiac pain, 410
gallbladder pain, 410
stomach pain, 410
slow synaptic potentials, $392,392 f$
sympathectomy
hypertension, 409
intermittent claudication, 409
Raynaud disease, 409
sympathetic, 2
sympathetic $v s$. parasympathetic systems, 395-396, 396t
Autonomic plexuses, 387
Autonomous bladder, 407
Axolemma, 48
Axonal reaction and axonal degeneration, 62
Axon hillock, 38, 48
Axonotmesis, 109
Axons, 2, 33, 48
initial segment of, 48
regeneration of, 108
terminals of, 48
Axon transport, 49
Axoplasm, 48

B

Babinski sign, 166
Bacterial toxins, 115
Bainbridge right atrial reflex, 406
Band fiber, 106
Bands of Baillarger, 281
Barr body, 38
Basal nuclei (basal ganglia), 10, 260-262, 310-318, 311f-312f, 314f
amygdaloid nucleus, 311-312, 311f
caudate nucleus, $311,312 f$
claustrum, 311, 311f, 312
corpus striatum, 310-311, 311f
afferent fibers, 312
brainstem striatal fibers, 313f, 314
caudate nucleus, $311,312 f$
connections, 312
corticostriate fibers, $312,313 f$
efferent fibers, 313f, 314
and globus pallidus, $312,313 f, 314$
lentiform nucleus, $311,312 f$
nigrostriate fibers, 313f, 314
striatonigral fibers, $313 f, 314$
striatopallidal fibers, $313 f, 314$
thalamostriate fibers, 313f, 314
disorders of, 267, 315
functions, 314-315, 314f
globus pallidus
afferent fibers, $313 f, 314$
connections, 312, 315
efferent fibers, 314
pallidofugal fibers, 314
striatopallidal fibers, 313f, 314
lentiform nucleus,corpus striatum, 311, $312 f$
terminology used to describe, $310,310 t$
Basal plates, 488, 490
Basal vein, 470
Baseline of skull, 507
Basilar artery, 466-468
Basilar groove, 204
Basis pedunculi, 154, 325
Basket cell, 231
Basolateral group, 303
Bell palsy, 352
Benedikt syndrome, 217, 218f
Benign fibroma, 112
Benzoquinonium, 115
Beta (β) receptors, 393
Beta rhythm, 292
Betz cells, 279, 282, 284
Biceps brachii tendon reflex, 100, 508
Bilateral anosmia, 349
Bilateral spastic paralysis, 170
Biliary ducts, effect of autonomic system on, 397t, 401
Binocular vision neurons, 327-328, 328f
Biological clocks, reticular formation influence on, 301
Bipolar neurons, 34, 327
Bitemporal hemianopia, 349, 350f

Blood-brain barrier (BBB)
brain trauma and, 457
drugs and, 457
in fetus and newborn, 457
functional significance, 455
in molecular terms, 453
permeability of, 452
structure of, 452-454, 453f
tumors and, 457
Blood capillary of central nervous system (CNS), 453-454, 453f
Blood-cerebrospinal fluid barrier, 454
functional significance, 455
structure of, 454
Blood pressure
blood viscosity, change in, 473
carotid sinus syndrome, 473
heart disease, 473
physical shock, 473
postural hypotension, 473
psychological shock, 473
Blood supply to brain
arteries, 464-469
capillaries, 470
cerebral circulation, 470-471
veins, 469-470
Blood supply to spinal cord, 471-472
Blood viscosity changes, 473
Brachial plexus, 13, 83f, $111 t$
Brachioradialis tendon reflex, 100, 508
Bradykinin, 145
Brain, 4-11, 7f-8f
arteries of, 464-469
blood flow to, 470-471
impairment of, 473-474
capillaries, 470
cerebrospinal fluid-brain interface, 454-455, 455f
computed tomography (CT) of, 24f, $270 f$
coronal section of, $263 f$
fetus with, $5 f$
forebrain, 9-10
cerebrum, 9-10
diencephalon, 9-10
hindbrain, 4-9 cerebellum, 5 medulla oblongata, 5 pons, 5
inferior view of, $259 f$
magnetic resonance imaging (MRI) of, $25 f$, $271 f$
median sagittal section of, $9 f$
meninges, 418-425
arachnoid mater, $419 f-420 f$, 422f, 424f-425f, 425
dura mater, 418-420, 419f-424f, 422-424
pia mater, 419f, 425
midbrain, 9
primary divisions of developing, $15 t$
structure, 10
veins of, 469-470
ventricular cavities of, 261f
vesicles, 15
Brain development
cerebellum (posterior part of metencephalon), 492-494
cerebral cortex, 497-498
cerebral hemispheres, 496-497
commissures, 498
diencephalon, 495-496
forebrain (prosencephalon), 494-495
medulla oblongata, 490-492
midbrain (mesencephalon), 492
myelination, in central nervous system, 498
pons (ventral part of metencephalon), 492
telencephalon, 496
vesicles, 490, $491 t$
Brain injuries, 21-22

Brain lacerations, 21
Brain sand, 253
Brainstem, 4
Arnold-Chiari phenomenon, 215, $215 f$
cranial nerve nuclei, $204 f$
cranial nerve nuclei in, $214 f$
functions of, 195
level inferior to pons, 204
medulla oblongata, 4-5, 9, 194, 196-204, 197f, 199t
clinical significance of, 215
cuneate nucleus, 197
cuneate tubercle, 197
decussation of lemnisci, 199, 199t, 201f
decussation of pyramids, 198-199, 199t, 201f
floor of fourth ventricle, 197
gracile nucleus, 197
internal structure, 197-204
just inferior to pons, 199t, 203
lateral medullary syndrome of
Wallenberg, 215
medial medullary syndrome, $215,216 f$
olives, 196, 199-203, 199t, $202 f$
posterior cranial fossa, raised pressure of, 215
posterior median sulcus, 197
reticular formation, 204
vascular disorders, 215
midbrain
Benedikt syndrome, 217, $218 f$
cerebral aqueduct blockage in, 217
clinical significance of, 217
trauma of, 217
vascular lesions, 217
Weber syndrome, 217, $218 f$
nucleus ambiguus, 203
olivary nuclear complex, 199
pons, 5, 9, 194
anterior surface of, 204, $205 f$
astrocytoma of, 216
caudal part, 205-207, 206f
clinical significance of, 215-217
infarctions of, 217
internal structure of, 205-209, 206f-208f
level inferior to, 204
posterior surface of, 205
tumors of, 216-217
posterior view, $196 f$
Brainstem striatal fibers, $313 f$, 314
Branchiomotor nerve fiber, 325
Branchiomotor nuclei, 325
Broca speech area, 284-285
lesions of, 290-291
Brown-Séquard syndrome (cord hemisection), 169f-170f, 170

C

Calcar avis, 439
Calcarine sulcus, 256, 259, 439
Callosal sulcus, 259
Caloric tests, 353
Capillaries of brain, 470
Capsular cells, 81
Carbachol, 115
Carbamylcholine, 97
Cardiac pain, 410
Carotid canal, 191, 194
Carotid sinus reflexes, 406
Carotid sinus syndrome, 473
Catecholamines, 54
Cauda equina, $13,447,490$
Caudal anesthesia, 20
Caudate nucleus, $10,261,439$
corpus striatum, 311, $312 f$
tail of, 440
Causalgia, 410
Cauterization, thalamic surgical relief of pain by, 369

Cavernous sinuses, 424
Cavity of fourth ventricle, 196
Celiac plexus, 389
Cell body, 33
Cell coat, 43
Cells of Martinotti, 280, 282
Cells of suprarenal medulla, 15
Cell transport, 43
Central branches, 465, 468
Central canal, 4, 9, 141, 196, 436, 447, 489
Central cord syndrome, 168-170, 169f
Central gray matter, 210
Central nervous system (CNS), 1, 73, 79
apparent recovery of, 112-113
blood capillary of, 453-454, 453f
brain, 1
interior, 2
major divisions, 2-11, $2 f$, $4 t$
myelination of, 498
neurons, 1
pain control in, 146
regeneration of axons, 108
relationship between oligodendrocyte and myelinated nerve fibers, $74 f$
spinal cord, 1. See also spinal cord
Central sulcus, 256
Centrioles, 43
Cerebellar cortex, 9, 231-233, 231f, 233f, 494
afferent tracts
from cerebral cortex, 236-237
from spinal cord, 237-238
from vestibular nerve, 237f, 238, $238 t$
cellular organization of, $232 f$
cerebellar efferent fibers, $239 f$ dentothalamic pathway, 239-240, 240t
fastigial reticular pathway, 240, 240t
fastigial vestibular pathway, 240, $240 t$
globose-emboliform-rubral pathway, 239, $240 t$
degeneration of, 267
functional unit of, 235
granular layer of cortex, 231, 233
molecular layer of cortex, 231
Purkinje cell layer of cortex, 231-232
Cerebellar efferent fibers, $239 f$
dentothalamic pathway, 239-240, 240t
fastigial reticular pathway, 240, 240t
fastigial vestibular pathway, 240, 240t
globose-emboliform-rubral pathway, 239, $240 t$
Cerebellar hemisphere syndrome, 243
Cerebellar peduncles, 229, 235, $235 f$
decussation of, 210, 239, $239 f$
inferior, 9, 196, 203
middle, 9, 204
superior, 9, 205
decussation of, 210, 239, $239 f$
Cerebelli, 195
Cerebellomedullary cistern, 447
Cerebellum, 5, 194, 204, 507
arteries of, 468
cerebellar cortical mechanisms, 234-235
cerebellar cortical neurotransmitters, 235
cerebellar peduncles, $229,235,235 f$
diseases involving
cerebellar syndromes, 243
common, 243
gait, postural changes and alteration of, 241
ocular movement disburtances, 242
reflexes, 242
signs and symptoms of, 241-243
functional areas, 233, $234 f$
functions of, 240
gross appearance, 229-231, $230 f$
intermediate zone of cerebellar hemisphere, 233
intracerebellar nuclei of, 233-234
nuclear mechanism of, 235
lobes of
anterior, 229
flocculonodular, 229
middle, 229
structures
cerebellar cortex, 231-233, 231f, 233f
cerebellar hemispheres, 229
functional areas, 233
gray matter of cortex, 231
intracerebellar nuclei, 233-234
white matter, 234
veins of, 470
Cerebral aneurysms, 474
Cerebral angiography, 474-479, 475f-478f
Cerebral aqueduct (aqueduct of Sylvius), 9, 209, 254, 436, 490, 494, 494f
Cerebral aqueduct of midbrain, $331,332 f$
Cerebral artery, 466f-467f
anterior, 465
atheromatous degeneration of, 473
middle, 465
syndromes, 472
Cerebral circulation, 470-471
impairment of cerebral blood flow, 473-474
interrruption, 472-473
Cerebral commissures, 267-268
Cerebral cortex
afferent cerebellar pathways of, 236-237, 236f, $238 t$
anatomical connections of, 284t
cerebral dominance, 289-292
cortical mechanisms, 283
development of, 497-498, 497f
function of, 290
lesions, 290-291
neuronal connections of, 281f
structure
cortical structure variations, 282-283
layers, 281-282, $282 f$
nerve cells, 279-280
nerve fibers, 280-281
types of neurons in, 280f
Cerebral cortical potentials, 292
Cerebral damage, 291-292
Cerebral dominance, 289-292
Cerebral edema, 64
Cerebral hemisphere lobes
inferior surface, 259-260
medial surface, 259-260
superolateral surface, 258-259
Cerebral hemispheres, 23f, 255-256, 255f-257f, 492
amygdaloid nucleus, 261
association fibers, 264
basal nuclei (basal ganglia), 260-262
claustrum, 262
commissure fibers, 262-264
corpus striatum, 261
development of, 495f-496f, 496-497
internal structure of, 260-266
lateral ventricles, 260
lateral view, 257f-258f
medial view, $257 f$
projection fibers, 264-265
tela choroidea, 265
venous drainage of, $469 f$
white matter, 260, 262-265
Cerebral hemorrhage, 22, 429, 474
Cerebral ischemia, 472
Cerebral peduncles, 209-210, 210f
crus cerebri of, 11 f
decussation of, 210
superior, 9, 205, 208
decussation of, 210, 239, $239 f$
tegmentum of, 255

Cerebrospinal fluid (CSF), 1, 3f, 4, 9, 16, 436, 437f, 490
absorption of, 450
around optic nerve, $452 f$
circulation of, 449-450, 450f
blockage of, 456
clinical measurement of, 456
in disease, pressure/composition, 456-457
expulsion of, 23
formation of, 448-449, 449f
excessive, 456
functions of, 448, 449t
glucose level in, 449, 456
physical characteristics and composition, $448 t$
pressure, 20, 22
Cerebrospinal fluid-brain interface, 454-455, 455f
Cerebrum, 9-10, 507
cerebral hemisphere lobes inferior surface, 259-260 medial surface, 259-260
superolateral surface, 258-259
cerebral hemispheres, 255-256, 255f-257f amygdaloid nucleus, 261 association fibers, 264 basal nuclei (basal ganglia), 260-262
claustrum, 262
commissure fibers, 262-264
corpus striatum, 261
internal structure of, 260-266
lateral ventricles, 260
lateral view, $257 f-258 f$
medial view, $257 f$
projection fibers, 264-265
tela choroidea, 265
white matter, 260, 262-265
diencephalon
actual superior wall of, 250
epithalamus, 253-254
gross features, 249-250
hypothalamic relations, 254
hypothalamus, 250, 254
inferior surface of, 251f, 254
lateral surface of, 250
mammillary bodies, 254-255
medial surface of, $250,251 f$
optic chiasma, 254
subthalamus, 253
superior surface of, 249-250
thalamus, 249-253, $252 f$
third ventricle, 254-255
tuber cinereum, 254
subdivisions, 249
sulci of
calcarine sulcus, 256
central sulcus, 256
lateral sulcus, 256
parieto-occipital sulcus, 256
Cervical disc herniations, 17-18
Cervical enlargement, 490
Cervical nerves, 12
Cervical plexus, 13
Cervical rib, 408
Cervical vertebrae, 12
Chemical synapses, 51-52
Chemoreceptors, 84
Chloramphenicol, 457
Cholinergic receptors, 393
blockade of, 394
Cholinesterases, 115
Chorea, 167, 315
Choreiform movements, 117, 315
Choroidal artery, 464-465
Choroidal branch, 468
of internal carotid, 265
Choroidal epithelial cells, 60
Choroidal fissure, 439

Choroidea of third ventricle, 250
Choroid plexus, 439, 442f, 492
blood supply to, 441-443, 468
from posterior inferior cerebellar arteries, 447
function of, 440, 449
of lateral ventricles, 440, 496
of rhomboid fossa (floor), 447
of third ventricle, 250, 441-443, 495
calcification of, 267
Choroid vein, 470
Chromatolysis, 39, 106-107
Chromophobe adenoma, 267
Cingulate gyrus, 259
Cingulum, 264
Circle of Willis, $464,468,470 f$
Circumferential blindness, 349, $350 f$
Claustrum, 262, 311, 311f, 312
Climbing fibers, 234
Clostridium botulinum, 115
CNs. See Cranial nerves
Coccygeal nerve, 12
Cochlear nerve, 340-341, 340f
descending auditory pathways, 341
disturbances, 353
nuclei, $340 f, 341$
Cochlear nuclei, 203, 207
Codeine, 164
Collateral eminence, 442
Collateral fissure, 442
Collateral sulcus, 259-260
Colliculus facialis, 335, 336f, 338
Colon, effect of autonomic system on, $397 t$, 400-401, 401 f
Coma, 292
Commissure fibers, 262-264
Commissures
anterior, 254, 262, 498
anterior gray, 141
cerebral, 267-268
development of, 498
of fornix, 264
gray, 4, 141, 447
habenular, 253-254, 264
posterior, 253-254, 263
posterior gray, 141
Communicating hydrocephalus, 456
Competitive blocking agents, 97
Compression of spinal cord
clinical signs, 167
extradural causes, 167
Computed tomography (CT), 23, 429
cerebral ventricles, clinical investigation of, 456
of cerebrovascular disease, 474
structure of brain, $24 f$
Conduction velocity of nerve fiber, 46 , $46 t$
Cones,visual system, 327
Congenital anomalies
anencephaly, 500, 501t
hydrocephalus, $500,500 f$
neural tube defects, 500-501
spina bifida, 498-500
Consciousness, 292
loss of, 306
somatosensory pathways to, $143 t$
Consensual light reflexes, 406
Constrictor pupillae muscle, 329-330
Contralateral homonymous hemianopia, 349, 350f
Contrecoup injury, 22
Conus medullaris, 4
Convolutions, 497
Cord transection syndrome, complete, 168 $169 f$
Coronal suture, 187, 190
Corona radiata, 10, 146, 149, 154, 264, 325

Corpus callosum, 10, 255, 259, 262
body of, 262
development of, 498
genu of, 262, 439
radiation of, 262
rostrum of, 262
tapetum of, 439-440
Corpus striatum, 261, 310-311, 311f, 468, 496
afferent fibers, 312
brainstem striatal fibers, 313f, 314
caudate nucleus, $311,312 f$
connections, 312
corticostriate fibers, $312,313 f$
efferent fibers, 313f, 314
and globus pallidus, $312,313 f$, 314
lentiform nucleus, $311,312 f$
nigrostriate fibers, 313f, 314
striatonigral fibers, $313 f$, 314
striatopallidal fibers, $313 f$, 314
thalamostriate fibers, 313f, 314
Cortex, 9-10
effect of autonomic system on, $397 t$
Cortical areas
association cortex, 287-289
frontal lobe, 283-285
Broca speech area, 284-285
frontal eye field, 284
movement areas of body, 283-284
posterior region, 283
precentral area, 283
premotor area, 284
primary motor area, 283-284
secondary motor area, 283
supplementary motor area, 284
insula, 287
occipital lobe, 286-287
macula lutea, 287
occipital eye field, 287
primary visual area (Brodmann area),
286-287
secondary visual area (Brodmann areas), 287
visual cortex, 287
parietal lobe, 286
outer layer of Baillarger, 286
primary somesthetic area, 286
secondary somesthetic area, 286
somesthetic association area, 286
prefrontal cortex, 285
taste area, 287
temporal lobe
primary auditory area (Brodmann areas), 287
secondary auditory area (auditory
association cortex), 287
sensory speech area of Wernicke, 287
vestibular area, 287
Cortical branches, 465,468
Cortical mechanisms, 283
Corticobulbar tract, 494
Corticohypothalamic fibers, 376
Corticomedial group, 303
Corticonuclear fibers, 214, 323, 325
Corticopontine fibers, 207, 214
Corticopontine tract, 494
Corticospinal fibers, 196, 214
Corticospinal tract (pyramidal tract), 154-156, 282, 494
lesions, 166
spinal cord
anterior, 155
lateral, 155
Corticostriate fibers, $312,313 f$
Cranial cavity, 418, 422
anterior cranial fossa, 191-192
base of skull, 191, $192 f$
mandible, 195
middle cranial fossa, 192-195
vault of skull, 191

Cranial nerve I
olfactory bulb, 326f, 327
olfactory nerves, 326-327, 326f
olfactory tract, $326 f, 327$
Cranial nerve II, 327-331, 328f
binocular vision neurons, 327-328, 328f
lateral geniculate body, $327,328 f$
optic chiasma, 327, $328 f$
optic radiation, $327,328 f$
optic tract, 327, 328f-329f
visual pathway neurons, 327-328, $328 f$
visual reflexes, 328-331, $329 f$ accommodation reflex, 329-330, 329f
consensual light reflex, 329, $329 f$
corneal reflex, 330, 330f
direct light reflex, $328,329 f$
pupillary skin reflex, 331
visual body reflexes, 330-331, 330f
Cranial nerve III, 331, 332f, 494
oculomotor nerve course, 331, $332 f$
oculomotor nerve nuclei, 331, 332f
Cranial nerve IV, 331-332, 333f, 494
trochlear nerve course, 331-332, $333 f$
trochlear nerve nuclei, 331, 333f
Cranial nerve IX, 341
course, 343, 343f
distribution, $343 f$
function, $325 t$
nuclei, $341,342 f$
main motor nucleus, 341-342, 342f
parasympathetic, $342,342 f$ sensory, $342,342 f$
Cranial nerve nuclei, 323-353
abducens nerve, 335, 336f
course, 336f, 337
nucleus, 335, 336f
facial nerve, 337-339
course, $338,338 f$
distribution, 338f, 339
nuclei, 337-338, $337 f$
general visceral motor nuclei, 325
motor nuclei, 325
oculomotor nerve, 331
course, 331, 332f
nuclei, 331, $332 f$
olfactory nerves, 326-327, 326f
olfactory bulb, 3266,327
olfactory tract, $326 f, 327$
optic nerve, 327-331, $328 f$
accommodation reflex, 329-330, 329f
binocular vision neurons, 327-328, 328f
consensual light reflex, 329, 329f
corneal reflex, 330, 330f
direct light reflex, 328, 329f
lateral geniculate body, 327, 328 f
optic chiasma, 327, 328f
optic radiation, $327,328 f$
optic tract, 327, 328f-329f
pupillary skin reflex, 331
visual body reflexes, 330-331, 330f
visual pathway neurons, $327-328$, $328 f$
visual reflexes, 328-331, 329f
organization, 323-326
sensory nuclei of, 325-326
somatic motor nucleus, 325
trigeminal nerve, 332, $334 f$
course, 335, 335 f
distribution of, 335f
main sensory nucleus, 332-333, 334f
mesencephalic nucleus, $333,334 f$
motor component, 334-335, 334f
motor nucleus, 333, 334f
nuclei, 332-333, 334f
sensory components, 333-334, 334f
spinal nucleus, 333, 334f
trochlear nerve, 331
course, 331-332, 333f
nuclei, $331,333 f$

Cranial nerves (CNs), 81, 82f, 323, 324t-325t
branchiomotor nerve fiber of, 325
functional components of, $324 t$
general visceral motor nuclei of, 325
motor nuclei of, 323, 325
organization, 323-326
sensory ganglia of, 15
sensory nuclei of, 325-326
somatic motor fiber of, 325
Cranial nerve V, $332,334 f$
distribution of, $335 f$
main sensory nucleus, 332-333, 334f
mesencephalic nucleus, $333,334 f$
motor component, 334-335, 334f
motor nucleus, 333, 334f
sensory components, 333-334, 334f
spinal nucleus, 333, 334f
trigeminal nerve course, $335,335 f$
trigeminal nerve nuclei, 332-333, 334f
Cranial nerve VI, 335, $336 f$
abducens nerve course, 336f, 337
abducens nerve nucleus, 335, 336
Cranial nerve VII, 337-339
course, 338, 338 f
distribution, $338 f, 339$
nuclei, 337
main motor, 337, $337 f$
parasympathetic, 337, 337f sensory, 337-338, 337f
Cranial nerve VIII
cochlear nerve, 340-341, 340f
vestibulocochlear nerve, 339-341
Cranial nerve X, 343
course, 344-345, 345f
distribution of, $345 f$
function, $325 t$
nuclei, 343 main motor, 343, 344f-345f parasympathetic, 343, 344f-345f sensory, 343-344, 344f-345f
Cranial nerve XI, 345
cranial root, $345,346 f$
distribution of, 347f
function, $325 t$
spinal root, 345-346, 346f
Cranial nerve XII, 347
course, 347f, 348, 348f
function, $325 t$
nucleus, 347-348, 347f-348f
Cranial part of accessory nerves, 204
Cranial root, $325 t, 345,346 f$
Craniopharyngioma, 267
Craniosacral outflow, 395
Cremasteric reflex, 166
Cribriform plate, 192
Crista galli, 192
Crossed extensor reflex, 161
Crossed homonymous hemianopia, 291
Crus cerebri, 210-211, 214
Cuneate nucleus, 197, 490
Cuneate tubercle, 197
Cuneatus of medulla oblongata, 149
Cuneocerebellar tract, 149-150
Cuneus, 259
Cutaneous nerves, 83
Cytoplasm, 38-43, 41f
Cytotoxic edema, 64

D

Decamethonium, 115
Decerebrate rigidity, 162
Decussation
of cerebellar peduncles, 210, 239, 239f
of lemnisci, 199, 199t, 201f
in midbrain (mesencephalon), 210
of pyramids, 154, 196, 198-199, 199t, 201f
sensory, 149

Deep middle cerebral vein, 470
Defecation, 407
Degeneration of autonomic nerves, 407
Delta rhythm, 292
Dementia, 315
Dendrites, 33, 48
Dendritic spines, 48, 232, 280
Dentate, 494
Dentate gyrus, 303
Dentate nucleus of cerebellar nuclei, 9, 233
Dentothalamic pathway, 239-240, 240t
Dermatome, 98, 116
dermatomal charts, $99 f-100 f$
Descending autonomic fibers, 154, 159-160
Descending fibers, to brainstem, 377
Descending tracts, 152-160, 152f, 153t
anatomical organization, 153
descending autonomic fibers, 154, 159-160
development of, 497
functions, 153-160
lesions of, 166
clasp-knife reaction, 166 exaggerated deep muscle reflexes, 166 severe paralysis, 166 spasticity or hypertonicity, 166
olivospinal tract, 154, 159, 160 f
rubrospinal tract, 154, 157-158, 158f
tectospinal tract, 154, 157, 157f
vestibulospinal tract, 154, 158-159, 159f
Destructive lesions of frontal eye field, 290
Diabetes insipidus, 267, 382
Diabetes mellitus, 408
Diaphragma sellae, 254, 418, 419f, 420, 421f
Diencephalon, 9-10, 490, 495-496, 495f
actual superior wall of, 250
epithalamus, 253-254
gross features, 249-250
hypothalamic relations, 254
hypothalamus, 250, 254
inferior surface of, 251f, 254
lateral surface of, 250
mammillary bodies, 254
medial surface of, $250,251 f$
optic chiasma, 254
subthalamus, 253
superior surface of, 249-250
thalamus, 249-253, $252 f$
third ventricle, 254-255
tuber cinereum, 254
Diisopropylphosphorofluoridate (DPF), 63
Dimethyltubocurarine, 115
Diplegia, 166
Diploë, 185
Diploic veins, 422
Direct light reflexes, 406
Dopamine, 54, 391
Dorsal accessory olivary nuclei, 199
Dorsal motor nucleus, 325
Dorsal nucleus of vagus, 203
Dorsomedial nucleus, 365
Dorsum sellae, 194
D-tubocurarine, 97, 114
Dura mater, 4
brain, 418-420, 419f-424f, 422-424
spinal cord, 425-426, 426f-428f
Dysarthria, 243
Dysdiadochokinesia, 241-242
Dystonia, 167
E
Ectoderm, 14
Edema
cerebral, 64
cytotoxic, 64
interstitial, 64
vasogenic, 64
Edinger-Westphal nucleus, 213, 325, 329, 331

Effector endings
cardiac muscular, neuromuscular junctions in, 98
secretory cells of glands, nerve endings on, 98
skeletal muscle, neuromuscular junctions in, 94-97, $94 f$
skeletal muscle innervation, 93-94
smooth muscle, neuromuscular junctions in, 97-98
Efferent fibers, 12, 80, 234
corpus striatum, 313f, 314
Efferent nerve fibers, 377, 378f, 378t, 388-390, $389 f$
α efferents, 138
Γ efferents, 138
Ehrlich, Paul, 452
Ejaculation, 408
effect of autonomic system on, $397 t, 403$, 404f
Electrical synapses, 54
Electrocorticograms, 292
Electroencephalogram, 292
Electromagnetic receptors, 84
Emaciation, 267
Emboliform nucleus of cerebellar nuclei, 233-234
Embryonic stem cell treatment of neurologic diseases, 501
Emissary veins, 422
Emotional disorders, 382
Encapsulated receptors, 85-89
Encephalogram, 456
Endocrine nervous system control, 301
Endoneurium, 80
Endorphins, 146
Endosteal layer, 418
Endothelial cells of blood capillaries, 453
Endplate potential, 96
Enkephalins, 146
Enteric nervous system, 394-395
Entoderm, 14
Ependyma, 59-60, 141, 436, 498
Ependymal cells, 488
Ependymocytes, 59
Epidural hematoma burr hole, 507
Epidural (extradural) hemorrhage, 22, 429
Epilepsy, 292
Epineurium, 80
Epithalamus, 253-254
Epithelial cells, 59-60, 61f
Erectile tissue, effect of autonomic system on, 397t, 402-403, 404f
Erection, 407
clitoral, 402-403
penile, 402-403
Ethmoid, 187
Exocytosis, 96
Expressive aphasia, 290
External auditory meatus, 191
External band of Baillarger, 282
External capsule, 261-262, 497
External granular layer of cortex, 281-282
External medullary lamina, 363, $364 f$
External occipital protuberance, 188-190
External ophthalmoplegia, 351
External pyramidal layer of cortex, 282
Exteroceptive information, 142
Extracellular space, 60
Extrapyramidal tracts, 165
Eye, autonomic innervation of, 396-397, 397t
Eyeball, lateral rectus muscle of, 335, 336f, 337
Eye field
frontal, 284
destructive lesions of, 290
irritative lesions of, 290
occipital, 287

F

Facial colliculus, 205, 445
Facial expression muscles control, 301
Facial nerve, 204, 337-339, 351-352
course, $338,338 f$
distribution, 338f, 339
function, $324 t$
lesions, 351-352
nuclei, 337
main motor, $337,337 f$
parasympathetic, 337, 337f
sensory, 337-338, 337f
Facial nucleus, 205
Falx cerebelli, 420
Falx cerebri, 10, 192, 255, 418, 419f, 421f, 496
Fasciculus cuneatus, 147-149, 198
injury, 163-164
Fasciculus gracilis, 147-149, 198
injury, 163-164
Fasciculus lenticularis, 314
Fastigial nucleus of cerebellar nuclei, 233-234
Fastigial reticular pathway, 240, $240 t$
Fastigial vestibular pathway, 240, $240 t$
Fast pain, 145-146
Fast synaptic potentials, $392,392 f$
Feeder arteries, 472
Fibrous astrocytes, 55, $56 f$
Fifth cervical segment, spinal cord, $139 f$
Filum terminale, 4, 13, 13f, 490
Fimbria, 263, 303, 440
Fine-skilled voluntary movements, 166
First-order neuron, 142, 143t, 144, 146, 149t 153, 161, 325-326
Flaccid paralysis, 166
Flocculonodular lobes of cerebellum, 229
Folic acid, 501
Fontanelles, 191
Foramen cecum, 192
Foramen lacerum, 191, 194
Foramen magnum, 194
Foramen of Magendie, 443, 492
Foramen ovale, 191, 194
Foramen rotundum, 188, 193-194
Foramen spinosum, 191, 194, 422
Foramina of Luschka, 443, 446f, 492
Forceps major, 262, 439
Forceps minor, 262
Forebrain (prosencephalon)
cerebrum, 9-10
development of, 494-495
diencephalon, 9-10
vesicle, 15, 488, 490, 491f, 491t
Fornix, 249, 255, 263
anterior column of, 439
body of, 264, 302f, 303
columns of, 304
commissure of, 264, 303-304
as crus of, $302 f, 303$
development of, 498
posterior column of, 440
posterior columns of, 264
Fourth ventricle, $9,197,199 t, 229,234,436$, 490
cavity of, 141, 196
floor of, 158, 197, 203, 454
tumors of, 456-457
Free nerve endings, 84, $85 f$
Frey syndrome, 408
Frontal bone, 186-187
Frontal eye field, 284
destructive lesions of, 290
irritative lesions of, 290
Frontal leukotomy, 291
Frontal lobe, 256, 258, 496
frontal eye field, 284
movement areas of body, 283-284
posterior region, 283
precentral area, 283
premotor area, 284
primary motor area, 283-284
secondary motor area, 283
supplementary motor area, 284
Frontal lobectomy, 291
Fronto-occipital fasciculus, 264
Fusiform cells, 280

G

Gag reflex, 353
Gait, postural changes and alteration of, 241
Gallamine, 115
Gallbladder
effect of autonomic system on, 397t, 401
pain, 410
Ganglia, 387
Ganglion
basal nuclei, 310-318
ciliary, 397
Ganglion-blocking agents, 392-393
Ganglion cells, 327-328
Ganglioneuroma, 62
Ganglionic layer (internal pyramidal layer) of cortex, 282
Ganglionic layer of retina, $327,328 f$
Ganglion impar, 390
Ganglion-stimulating agents, 392
Gastrointestinal tract, effect of autonomic system on, 397t, 400-401, 401f
Gating, 47
Gating theory, 146
General visceral motor nuclei, 325
Geniculate ganglion, 338, 338f
Genital hypoplasia, 267
Genu of corpus callosum, 262, 264
Glands, effect of autonomic system on, 397t
Glial cells, 253
Gliotic scar, 63
Global aphasia, 291
Globose-emboliform-rubral pathway, 239, $240 t$
Globose nucleus of cerebellar nuclei, 233-234
Globus pallidus, 496f, 497
afferent fibers, 313f, 314
connections, 312, 315
efferent fibers, 314
pallidofugal fibers, 314
striatopallidal fibers, 313f, 314
Glossopharyngeal nerve, 341, 353
accessory nerves, 204
course, $343,343 f$
distribution, $343 f$
function, $325 t$
nuclei, $341,342 f$
main motor, 341-342, $342 f$
parasympathetic, $342,342 f$
sensory, $342,342 f$
Glutamate, 145
Glycocalyx, 43
Golgi complex, 39-41
Golgi tendon organs, 92-93
Golgi type II neurons, $34,36 f$
Golgi type I neurons, $34,35 f-36 f$
Gracile nucleus, 197, 490
Granular cells, 327, 498
Granular layer of cortex, 231, 233, 283
Gray column,spinal cord
accessory nucleus, 138
anterior nerve cell groups, 138-139
central canal, 141
gray commissure, 141
lateral nerve cell groups, 141
lumbosacral nucleus, 138
posterior nerve cell groups, 139-141
Gray commissure, 4, 141, 447
Gray matter, 2, 4
central, 203-204
interthalamic connection of, 496

Gray rami communicantes, 388
Great cerebral vein, 265, 423
Greater petrosal nerve, 194
Gyri, 10, 497
Gyrus rectus, 260

H

Habenular commissure, 253-254, 264
Habenular nucleus, 253, 264
Hair follicle receptors, $84-85,86 f-87 f$
Hand, thalamic, 369
Headache
alcoholic, 429
caused by cerebral tumors, 429
due to diseases of teeth, paranasal sinuses, and eyes, 429
meningeal, 429
migraine, 429
Head Injuries
acute cerebral injury, $21 f$
skull fractures, 20-21
Heart, effect of autonomic system on, $397 t$, 399, 400 f
Hemiballismus, 167, 315
Hemiplegia, 166
Hemorrhage of pons, 217
Herniation of intervertebral discs, 16-17
Herpes simplex, 62
Herpes zoster, 62, 113
Heterotypical area of cortex, 282-283
Hexamethonium, 63
block ganglia, 392
Hindbrain
cerebellum, 5
medulla oblongata, 5
pons, 5
vesicle, $15,197,488,490,491 t$
Hippocampohypothalamic fibers, 376
Hippocampus, 249, 301
afferent connections of, 304-305, $305 f$
efferent connections of, 305, 305f
Hirschsprung disease, 408
Histamine, 145
Homotypical area of cortex, 283
Homotypical cortex, 289
Homunculus, 154
Horizontal cells of Cajal, 280
Horizontal fissure, 229
Horner syndrome, 171, 408
Hunger center, 381
Huntingtin, 315
Huntington disease, $315,316 f$
Hydrocephalus, 267, 455-456, 500, 500f
Hypalgesia, 116
Hyperesthesia, 116
Hyperkalemic paralysis, 115
Hyperkinetic disorders, 315
Hypertension, 409
Hyperthermia, 382
Hypertonia, 166
Hypertonicity, 166
Hypesthesia, 116
Hypoglossal canal, 191, 194
Hypoglossal nerves, 194, 204, 347, 353
course, 347f, 348, 348f
function, $325 t$
nucleus, 347-348, 347f-348f
Hypoglossal nucleus, 203, 446
Hypoglossal triangle, 446
Hypokalemic periodic paralysis, 115
Hypokinetic disorders, 315
Hypophyseal portal system, 379-380, 380t
Hypophysis, 255
Hypophysis cerebri, 194, 254, 420
connections with, 377-380, 379f, 380t
hypophyseal portal system, 379-380, $380 t$
hypothalamohypophyseal tract, 377, 379

Hypotension, postural, 473
Hypothalamic nuclei, 375-376, 375f-376f
lateral zone, 375-376
lines of communication, 376-380
afferent nervous connections, 376-377
efferent nervous connections, 377
hypophysis cerebri, connections with, 377-380, 379f, 380t
medial zone, 375-376
Hypothalamic regulatory hormone, $380 t$
Hypothalamic relations, 254
Hypothalamic sulcus, 250, 255
Hypothalamic syndromes, 267
Hypothalamohypophyseal tract, 377, 379
Hypothalamus, 9, 250, 254, 267, 373-382, 374f, 454
functions, 380-382, $380 t$
autonomic control, 381, 381f
circadian rhythms, control of, 382
emotion and behavior, 381-382
endocrine control, 381
neurosecretion, 381
regulation of food and water intake, 381
temperature regulation, 381
lesions, 382
lines of communication, 376-380
afferent nervous connections, 376-377, $378 t$
efferent nervous connections, $377,378 t$
hypophysis cerebri, connections with, 377-380, 379f, 380t
nuclei, $375-376,375 f-376 f$
lateral zone, 375-376
medial zone, 375-376
parts of, $374 f$
position, $374 f$
structures, $373,374 f$
Hypothermia, 382
Hypotonia, 166, 241

I

Iatrogenic parkinsonism, 317
Incisive fossa, 190
Incisures of Schmidt-Lanterman, 73
Indusium griseum, 303
Infarction of pons, 217
Inferior articular processes, 133
Inferior brachium, 209, 366
Inferior cerebellar peduncles, 9, 196, 203
Inferior colliculi/inferior colliculus, 210-213, 211f-212f, 213t, 331, 333f, 494
Inferior conchae, 187
Inferior frontal gyrus, 258
Inferior frontal sulci, 258
Inferior horn of ventricles, 436, 440
roof of, 440
Inferior longitudinal fasciculus, 264
Inferior medullary velum, $443,445 f$
Inferior olivary nucleus, 196, 199
Inferior orbital fissure, 188
Inferior parietal lobule, 258
Inferior petrosal sinuses, 194, 424
Inferior quadrantic hemianopia, 291
Inferior sagittal sinus, 265, 419, 419f, 421f, 423
Inferior salivatory nucleus, 325
Inferior vertebral notch, 133
Inferior vestibular nucleus, 199
Infraorbital foramen, 187
Infratemporal crest, 188
Infratemporal fossa, 188
Infundibulum, 249, 254-255, 496
Inhibitory interneurons, 235
Inner band of Baillarger, 282
Inner glial limiting membranes, 55
Insula, 256, 287, 497
lesions of, 291
Intermaxillary suture, 187
Intermittent claudication, 409

Internal acoustic meatus, 195
Internal arcuate fibers, 199
Internal capsule, 10, 146, 149, 154, 261, 327, 497
anterior limb, 264
arteries of, 468
auditory radiation of, 287
lesions, 268-269
posterior limb, 264
of thalamus, 252
of white matter, 250
Internal carotid artery, 424, 464-465
occlusion of, 473
Internal carotid plexus, 331
Internal cerebral veins, 265
Internal granular layer of cortex, 282
Internal jugular vein, 195
Internal medullary lamina, $365 f$
Internal occipital crest, 195
Internal occipital protuberance, 195
Internal ophthalmoplegia, 351
Internal strabismus, 351
Internuclear ophthalmoplegia, 351
Internuncial neurons, 325
Interpeduncular cistern, 447
Interpeduncular fossa, 210, 331
Intersegmental spinal reflexes, 160
crossed extensor reflex, 161
influence of higher neuronal centers on, 162
monosynaptic reflex, $160,161 f$
Intersegmental tracts, 160-162
Interspinous ligament, 135
Interstitial edema, 64
Interthalamic connection, 363, $364 f$
Intertransverse ligaments, 135
Interventricular foramen, 9, 260, 495
Interventricular foramina (foramina of Monro), 10, 254, 436, 490
Intervertebral foramen, 133
Intestine, effect of autonomic system on, $397 t, 400,401 f$
Intracerebellar nuclei, 231
Intracranial hematoma treatment, 507-508
Intracranial hemorrhage, 22, 429, 474
in infant, 429
Intracranial pneumography, 456
Intralaminar nuclei, 366
Intraparietal sulcus, 258
Intrinsic fibers, 234
Ipsilateral band of cutaneous anesthesia, 170
Ipsilateral lower motor neuron paralysis, 170
Ipsilateral spastic paralysis, 170
Iris, autonomic innervation of, 396-397, 397t, $398 f$
Irritative lesions of frontal eye field, 290

J

Jacksonian epileptic seizure, 290
Jerk nystagmus, 242
Jugular foramen, 191, 194
Junctional folds, 96

K

Kidney, effect of autonomic system on, 397t, 401, $402 f$
Kinesin-coated organelles, 43
K+ ions, 145
Klüver-Bucy syndrome, 306
Knee jerk, 101
pendular, 242

L

Labyrinthine artery, 467
Lacrimal gland, autonomic innervation of, 397-398, 397t, 399f
Lacrimal nuclei of facial nerve, 325
Lactic acid, 145

Lambdoid suture, 187-188
Laminae, 132
Lamina terminalis, $254,262,495,498$
Large autonomic plexuses, 390
Lateral corticospinal tract, 155, 198
Lateral dorsal nucleus, 366
Lateral geniculate body, 327-328, 328f, 366, 496, 498
Lateral gray column, 141
Lateral herniation, 18
Lateral lemniscus, 209, 211, 214, 341
Lateral medullary syndrome of Wallenberg, $215,216 f$
Lateral nerve cell groups, 141
Lateral nucleus, 376
Lateral posterior nucleus, 366
Lateral pterygoid plate, 191
Lateral rectus muscle of eyeball, 335, 336f, 337
Lateral spinothalamic tract, 144-146, 204
injury, 163
terminations of, 146
Lateral sulcus, 256, 498
Lateral tuberal nuclei, 376
Lateral ventricles, 10, 260, 436-440, 441f, 468, 490
anterior horn of, 436, 439
body of, 436-439
choroid plexus of, 439-440
development of, 495
disorders of, 267
floor of, 439
inferior horn of, 436, 440
posterior horn of, 436, 439
roof of, 439
Lateral vestibular nucleus, 240
Lateral white column, 4
Lateral white matter, 141
Law of reciprocal innervation, 161
L-dopa, 63, 457
Lenticulostriate artery, 22
Lentiform nucleus, 10, 261, 311, 312f, 496
Lesser petrosal nerve, 194
Lethargy, 292
Ligamentum denticulatum, 426, 490
Ligamentum flavum, 135
Ligamentum nuchae, 135
Light touch, 113
Limbic system, 301, 302f-305f, 303-306, 377
alveus, $303,303 f$
amygdaloid nucleus, 303
basolateral group, 303
connecting pathways of, 303-304
corticomedial group, 303
dentate gyrus, 303-304
fimbria, 303
fornix, 302f, 303
functions, 305
hippocampal formation, 301, 302f-304f, 303
hippocampal structure, 304
hippocampus, 301
afferent connections of, 304-305, 305f
as crus of fornix, 302f, 303
efferent connections of, $305,305 f$
indusium griseum, 303
mammillary body, 304
mammillothalamic tract, 304
parahippocampal gyrus, 303
pes hippocampus, 301
septum pellucidum, 304
striae, 303
stria terminalis, 304
uncus, 303
Lingual gyrus, 260
Lipofuscin, 43
Liver, effect of autonomic system on, $397 t$
Lobes, 10
of cerebellum
anterior, 229
flocculonodular, 229
middle, 229
of cerebral hemisphere
inferior surface, 259-260
medial surface, 259-260
superolateral surface, 258-259
frontal, 256, 258, 283-284, 496
occipital, 256, 259, 286-287, 496
parietal, 256, 258, 286, 496
temporal, 193, 256, 258
Long association fibers, 264
Long ciliary nerves, 331, 397
Longitudinal cerebral fissure, 255
Longitudinal fissure, 10
Lower limb arteries, effect of autonomic system on, $397 t, 405,405 f$
Lower motor neurons, 152-153, 325
cerebellum functions, influence on, 240
inhibition, 162
lesions, 166, $352 f$
palsy, 217
paralysis, 168, 170
in progressive muscular atrophy, 171
in syringomyelia, 170
Lumbar and sacral plexuses, 13
Lumbar disc herniations, 18-19
Lumbar enlargement, 490
Lumbar nerve, 12
Lumbar plexus, 13, $112 t$
Lumbar puncture, 490
landmarks for performing, 510-512, 511f
Lumbosacral nucleus, 138
Lumbosacral root syndrome, $110 t$
Lung, effect of autonomic system on, 397t, 400, 400 f
Lysosomes, 43

M

Macula, 327
Macula lutea, 287, 328
Magnetic resonance imaging (MRI), 23-26 cerebral ventricles, clinical investigation of, 456
of cerebrovascular disease, 474
structure of brain, $25 f$
Main motor nucleus, 341-342, 342f
Major dense line, 73
Malignant sarcoma, 112
Mammillary bodies, 249, 255, 304, 496
Mammillotegmental tract, 377
Mammillothalamic tract, 304, 377
Mandible, 195
angle of, 195
body of, 195
Mandibular fossa, 191
Mastoid process, 187, 191
Maxillae, 187
Mechanoreceptors, 84
Meckel cave, 335
Medial accessory olivary nuclei, 199
Medial eminence, 205, 445
Medial geniculate body, 209, 366, 496
Medial lemniscus, 149, 203, 205, 211, 214
Medial longitudinal fasciculus, 157, 203, 205, 210, 213, 331, $333 f$
Medial medullary syndrome, 215, $216 f$
Medial occipitotemporal gyrus, 260
Medial pterygoid plate, 191
Medial vestibular nucleus, 199, 205
Medial wall, 439
Median eminence of tuber cinereum, 254
Median sulcus, 205, 445
Medulla, effect of autonomic system on, $397 t$
Medulla oblongata, 4-5, 9, 194, 196-204, 197f, 199t
arteries of, 468
clinical significance of, 215
cuneate nucleus, 197
cuneate tubercle, 197
decussation
of lemnisci, 199, 199t, 201f
of pyramids, 198-199, 199t, 201f
development of, 490-492
floor of fourth ventricle, 197
gracile nucleus, 197
internal structure, 197-204
just inferior to pons, 199t, 203
lateral medullary syndrome of Wallenberg, 215, $216 f$
medial medullary syndrome, $215,216 f$
olives, 196, 199-203, 199t, $202 f$
posterior cranial fossa, raised pressure of, 215
posterior median sulcus, 197
reticular formation, 204
vascular disorders, 215
veins of, 470
Medullary arteries, 467
of Adamkiewicz, 472
Medullary reticulospinal tract, 156
Medulloblastoma of vermis, 243
Meissner corpuscles, 87-88, 87f-88f
Melanin granules, 43
Melanocytes, 15
Melatonin, 254
Ménière disease, 353
Meningeal artery and vein, middle, 188
Meningeal branches, 466
Meningeal headache, 429
Meningeal layer, 418, 419f-421f
Meningeal veins, 422, $423 f$
Meninges, 1, 418-430, 490
brain, 418-425
arachnoid mater, 419f-420f, 422f, 424f-425f, 425
dural arterial supply, 422, 423f-424f
dural nerve supply, 420, 422
dural venous sinuses, 419f, 420,
421f-422f, 422-424
dura mater, 418-420, 419f-424f, 422-424
pia mater, 419f, 425
excessive brain movement, 428-429
functional significance, 428
headaches, 429
intracranial hemorrhage, 429
intracranial hemorrhage in infant, 429
spinal cord, 425-428
arachnoid mater, 426, $426 f$
dura mater, 425-426, 426f-428f
pia mater, $426,426 f$
Meningitis, 429
Meningocele, 498, $500 f$
Meningomyelocele, 499
Merkel cell, 84
Merkel discs, $84,85 f-86 f$
Mesaxon, 73, 79
Mesencephalon, 490
Mesoderm, 14
Metaproterenol, 393
Metencephalon. See cerebellum; midbrain (mesencephalon); pons
Methacholine chloride, 115
Metopic suture, 190
Microfilaments, 42
Microglia, 58-59
Microglial cells, 488
reactions to injury, 63
Microtubules, 42, $42 f$
Midbrain, 209f, 490
arteries of, 468
basis pedunculi of, 154
Benedikt syndrome, 217, $218 f$
cerebral aqueduct of, $331,332 f-333 f$
blockage in, 217
cerebral peduncles, 209
clinical significance of, 217
crus cerebri, 210-211, 214
decussation in, 210
development of, 492
inferior brachium, 209
inferior colliculus, 209-213, 211f-212f, 213t, 494
medial geniculate body, 209
reticular formation, 210
substantia nigra, 210-211, 214
superior brachium, 209
superior colliculus of, 211f-213f, 213-214, 213f, 213t, 327, 329f, 494
tectum, 364f
trauma of, 217
vascular lesions, 217
veins of, 470
Weber syndrome, 217, 218f
Midbrain vesicle, 15, 488, 490, 491t
Middle cerebellar peduncles, $9,204,492$
Middle cerebral artery, 465
occlusion of, 472-473
Middle conchae, 187
Middle cranial fossa, 192-195
Middle frontal gyrus, 258
Middle lobes of cerebellum, 229
Middle meningeal artery, 422
Middle meningeal vessels, 191
Middle temporal sulci, 258
Midline nuclei, 366
Migraine, 429
Minor dense line, 73
Mitochondria, 41
Mitral cell, 326f, 327
Modality of sensation, 113
Molecular layer (plexiform layer) of cortex, 231, 281
Monoplegia, 166
Monosynaptic reflex, 160, 161 f
Morphine, 164
Mossy fibers, 235
Motor cortex, 282, 284, 286
lesions of, 290
precentral area, 283
primary motor area, 153t, 154, 283-284
secondary motor area, 153t, 154, 283
supplementary motor area, 284
Motor endplate, 94, 95f-96f
drugs and diseases affecting, $114 t$
on stimulation of motor nerve, 97
Motor fibers, 12
Motor innervation of intrafusal fibers, 90
Motor nuclei/motor nucleus
of cranial nerves, 323,325
dorsal, 325
of facial nerve, $337,337 f, 338,338 f$
general visceral, 325
of trigeminal nerve, 207, 333, 334f
Motor recovery, 109
Motor root, 204
Motor units, 93-94, 101-102
components of, 101f
skeletal muscle innervation, 93-94
Multiform layer (layer of polymorphic cells) of cortex, 282
Multiple sclerosis, 63-64, 171, 408
Multipolar neurons, 34
Muscarinic receptors, 392
Muscle action, 101-102
Muscle atrophy, 166
Muscle fatigue, 102
Muscle hypotonia, 243
Muscle joint sense pathways, 143t, 147-150, 149t Muscles
clinical observation of muscular activity, 117
involuntary movement of, 117
segmental innervation of, 100-101, 508-510
Muscle spasticity, 290
Muscle spindles, 101

Muscle systemic arteries, effect of autonomic system on, $397 t$
Muscle tone, 101-102, 116-117
abnormal
athetosis, 167
chorea, 167
dystonia, 167
hemiballismus, 167
hypertonia, 166
hypotonia, 166
myoclonus, 167
spasms, 167
tremors, 166
skeletal, 116-117
spinal cord, 165
Muscular contracture, 117, 166
Muscular coordination, 117
Muscular element of motor endplate, 94
Muscular fasciculation, 117, 166
Muscular power, 117
Myasthenia gravis, 115
Myelencephalon, 490
Myelinated nerve fibers, 71-73
in peripheral nervous system, $75 f$
relationship between oligodendrocyte and, $74 f$
Myelination in brain, 498
Myelin formation, 72-73
Myelin sheath, 72
Myelocele, 499
Myelography of vertebral column, 172, 173f-174f
Myoclonus, 117, 167
N
Nasal bone, 187
Neostigmine, 115
Nerve cell body, 34-37
structures of, $39 t$
Nerve fibers, 2, 33
afferent, 81, 84, 93
autonomic, 97-98, 98f
branching of, 81
bundles of, 80-81
myelinated, 71-73, 87, 92, 94
nonmyelinated, 79
peripheral, 80
unmyelinated, 88-89
Nerve impulse, 44-45
Nerve of pterygoid canal, 194
Nerve plexuses, 13, 81
Nerve tracts, 71, 72 f
Nerve transplantation, 110
Nervous system, early development of, 14-16
Nervus intermedius, 338
Neural crest, 14f, 15
Neural defect prevention, 500-501
Neural element of motor endplate, 94
Neural folds, 14, $14 f$
Neural groove, 14, 14 f
Neural plate, 14, $14 f$
Neural tube, 15, 15f, 197
Neurilemmomas, 112
Neurites, 33
Neuroanatomy
ascending tracts of spinal cord, 142-152, 143t, $147 f$
autonomic nervous system, 387-410, 397t
basal nuclei, 310-318
cranial nerve nuclei, 323-353
descending tracts of spinal cord, 152-160, 152f, 153t
effector endings, 93-98
hypothalamus, 373-382
meninges of brain, spinal cord, 418-430
motor units, 93-94, 101-102, 101f
muscle fatigue, 102
muscle tone, action, 101-102
nerve fibers, 71-73, 79
neuroanatomical data of clinical significance, 507-512
neuroglia, 54-60
peripheral nerves, 81-83, 81f-83f, 109-110
receptor endings, 84-93
reticular formation, 299-301
segmental innervation
of muscles, 100-101
of skin, 98
spinal cord, 136-141
thalamus, 363-369
Neuroblastoma, 62
Neuroblasts, 488-490, 494
Neurofibrils, $42,42 f$
Neurofilaments, 42 , $42 f$
Neuroglia, 2, 4f, 54-60
types of neuroglial cells
astrocytes, 55-58
ependyma, 59-60
microglia, 58-59
oligodendrocytes, $58,58 f$
Neuroglial cells, 231, 498
astrocytes, 55-58
ependyma, 59-60
microglia, 58-59
oligodendrocytes, $58,58 f$
structural features, location, and functions of, $56 t$
Neuroglial reactions to injury, 63
Neurohypophysis, 254
Neurologic examination, 118
Neuroma, 107
Neuromodulators, 54, $54 t$
Neuromuscular blocking agents, 114-115
Neuromuscular junctions
action of drugs on, 115-116
in skeletal muscle, 94-97, 94f
in smooth muscle, 97-98
Neuronal recovery, 107-108
Neuronal response to injury, 105-107
apparent recovery of central nervous system function, 112-113
of nerve cell body injury, 105
of nerve cell process injury, 105-107
nerve transplantation, 110
neuronal degeneration associated with senescence, 109
neuronal recovery, 107-108
of peripheral nerve tumors, 110-112
transneuronal degeneration, 108-109
traumatic lesions of peripheral nerves, 109-110
Neurons, 1, 33, 40f, 325
bipolar, 34
classification, $35 f, 37 t, 78 t$
fine structure of, $38 f$
golgi type I and II, 34
ionic and electrical changes, $44 f, 46 f$
multipolar, 34
nerve cell body, 34-37
cytoplasm, 38-43
nucleus, 37-38
structures of, 39t
nerve cell processes, 48-49
axon transport, 49
neurofibrils with, 42 f
plasma membrane, 42-48
depolarized, 45
excitation and conduction, 44-47
potassium channel, 47-48
sodium channel, 47-48
reactions to injury, 62
synapses, 49-54
chemical, 51-52
electrical, 54
neuromodulators, 54
neurotransmitters, 52-54
types, 33-34, $36 f$
unipolar, 33

Neuron tumors, 62
Neurophysins, 377, $379 f$
Neuropraxia, 109
Neurotendinous spindles (Golgi tendon organs), 92-93
functions, 93
Neurotmesis, 109
Neurotransmitters, 52-54, 54t
cerebellar cortical, 235
synapses, 52-54
treatment of neurologic disease by manipulation of, 63
Nicotine, 63, 97, 392
Nicotinic receptors, 392
Nigrostriate fibers, 313f, 314
Nissl substance, 38-39
Nociceptors, 84
Nodes of Ranvier, 72-73, 75f-76f
Non-communicating hydrocephalus, 456
Nonencapsulated receptors, 84-85
Norepinephrine, 235, 457
Nterior ethmoidal nerve, 192
Nuclear envelope, 38
Nuclear pores, 38
Nuclei, 5
Nuclei gracilis, 149
Nucleus, 37-38, 37f
Nucleus ambiguus, 203
Nucleus cuneatus, 198-199
Nucleus dorsalis (Clarke column), 140, 149
Nucleus gracilis, 198-199
Nucleus of tractus solitarius, 203
Nucleus pulposus, 135
Nystagmus, 242

0

Obesity, 267, 382
Occipital bone, 187
Occipital condyles, 191
Occipital eye field, 287
Occipital lobe, 256, 259, 286-287, 496
macula lutea, 287
occipital eye field, 287
primary visual area, 286-287
secondary visual area, 287
visual cortex, 287
Occipital sinus, 195, 420, 423-424
Occipitotemporal gyrus, 260
Occipitotemporal sulcus, 260
Ocular movement disburtances, 242
Oculomotor nerve, 331, 350-351
course, 331, $332 f$
distribution, $332 f$
function, $324 t$
nuclei, 331, $332 f$
Oculomotor nucleus, 213
Olfaction, 376
Olfactory aura, 306
Olfactory bulb, 192, 326f, 327
Olfactory hairs, 327
Olfactory nerves, 192, 326-327, 326f, 349-350
distribution of, $326 f$
fibers, 327
function, $324 t$
olfactory bulb, $326 f, 327$
olfactory cells and neurons of olfactory
bulb, connections between, $326 f$
olfactory cells and neurons of olfactory system, connections between, $326 f$
olfactory tract, $326 f, 327$
Olfactory receptor cells, 326-327
Olfactory sulcus, 260
Olfactory tract, 326f, 327
Oligodendrocytes, 58, 58f, 63, 72, 488
Olivary nuclear complex, 199
Olivary nuclei, 490
Olivospinal tract, 154, 159, 160 f
Ophthalmic artery, 464

Optic canal, 193-194
Optic chiasma, 249, 254-255, 327, 328f, 366, 498
Optic disc, 327, $328 f$
Optic nerve, 254, 327-331, 328f, 455
binocular vision neurons, 327-328, 328f
function, $324 t$
lateral geniculate body, $327,328 f$
optic chiasma, 327, $328 f$
optic radiation, $327,328 f$
optic tract, 327, 328f-329f
visual pathway neurons, 327-328, $328 f$
visual reflexes, 328-331, $329 f$
accommodation reflex, 329-330, 329f
consensual light reflex, 329, 329f
corneal reflex, 330, $330 f$
direct light reflex, $328,329 f$
pupillary skin reflex, 331
visual body reflexes, 330-331, 330f
Optic radiation, 265, 327, 328f, 439
Optic tract, 254, 327, 328f-329f
Orbital gyri, 260
Orbital margins, 187
Osmoreceptor, 379
Outer glial limiting membranes, 55
Outer layer of Baillarger, cerebral cortex, 286
Oxytocin hormones, 377

P
Pacinian corpuscles, $88,88 f-89 f$
Pain, 113-114
acute, treatment of, 164
chronic, treatment of, 164
conduction in central nervous system, 145-146
conduction to central nervous system, 145
control in central nervous system (CNS), 146
fast, 145-146
pathways, 142-145, 143f-144f
perception of, 145-146
pressure, 114
slow, 145-146
somatic, 164
thalamus, 369
visceral, 164
Palatal processes of maxillae, 190
Palatine bones, horizontal plates of, 190
Palatine foramina, greater and lesser, 190
Pallidosubthalamic fibers, 314
Pallidotegmental fibers, 314
Pallidotomy, 318
Papilledema, 455
Paracentral lobule, 259
Parahippocampal gyrus, 260, 303
Parallel fibers, 233
Paralysis
bilateral spastic, 170
diplegia, 166
flaccid, 166
hemiplegia, 166
ipsilateral spastic, 170
monoplegia, 166
paraplegia, 166
quadriplegia, 166
severe, 166
Paraplegia, 166
in extension, 162
in flexion, 162
Parasympathetic injuries, 407
Parasympathetic nucleus, $342,342 f$
Paresthesia, 116
Parietal bones, 187
Parietal eminence, 507
Parietal lobe, 256, 258, 496
outer layer of Baillarger, 286
primary somesthetic area, 286
secondary somesthetic area, 286
somesthetic association area, 286

Parieto-occipital sulcus, 256
Parkinson disease, 171, 315, 316f-318f
drug-induced, 318
motor function in, $318,318 f$
symptoms, 317
treatment of, 457
types of, 317
Parkinsonism, 166
Parotid gland, autonomic innervation, $397 t$, 398-399, 399f
Patellar tendon reflex, 101, 510
Pedicles, 132
Peduncles, 9
cerebellar, 229, 235, $235 f$
inferior, 9, 196, 203
middle, 9, 204
superior, $9,205,210,239,239 f$
Pelvic colon, effect of autonomic system on, 397t, 400-401, 401f
Pendular knee jerk, 242
Pendular nystagmus, 242
Penicillin, 457
Perineurium, 80
Periosteum, 418
Peripheral nerves, 71 , $77 f$
autonomic ganglia, 81
axons, regeneration of, 107-108
blood vessels within, 112
cranial nerves, $81,82 f$
endoneurial spaces within, 112
injuries, clinical principles, 110
local anesthetic action on nerve conduction, 112
lymphatics within, 112
peripheral nerve plexuses, 81-83
plexuses, 81-83
regeneration of, 109
sensory ganglia, 81
spinal nerves, $80-81,82 f-83 f$
structure, 81f
traumatic lesions of, 109-110
motor changes, 109
sensory changes, 109
vasomotor, sudomotor, and trophic changes, 109
tumors, 110-112
Peripheral nervous system (PNS), 1, 72, 79
cranial and spinal nerves, 2
cranial nerves, 12-13
ganglia, 13-14
autonomic ganglia, 14
sensory ganglia, 14
major divisions of, 12-14
spinal nerves, 12-13
Pernicious anemia, 171-172
Persistent vegetative state, 292
Pes hippocampus, 301, 303, 440
Petit mal, 292
Phantom limb, 113-114
Phenothiazines, 63
Phenoxybenzamine, 116, 394
Phenylbutazone, 457
Phenylephrine, 393
Pheochromocytoma, 62
Physostigmine, 115
Pia mater, 4, 440, 443, 443f, 447, 450, 490, 492
brain, 419f, 425
spinal cord, $426,426 f$
Pineal body, 254, 495
Pineal gland, 253-254
functions, 253-254
functions of, 267
Pinealocytes, 253
Pineal recess, 254
Pineal tumors, 267
Plasma membrane, 42-48
depolarized, 45
excitation and conduction, 44-47
potassium channel, 47-48
sodium channel, 47-48
summation of excitatory stimuli, 46
Pneumoencephalography, 267
Poliomyelitis, 62, 171
Polyneuropathy, 113
Pons, 5, 9, 194
anterior surface of, 204, 205f
arteries of, 468
astrocytoma of, 216
caudal part, 205-207, 206f
clinical significance of, 215-217
hemorrhage of, 217
infarctions of, 217
internal structure of, 205-209, 206f-208f
level inferior to, 204
posterior surface of, 205
tumors of, 216-217
veins of, 470
Pontine arteries, 467
Pontine cistern, 447
Pontine nuclei, 203, 207, 492
Pontine reticulospinal tract, 156
Positron emission tomography (PET), 26, $26 f$
of cerebrovascular disease, 474
Postencephalitic parkinsonism, 317
Posterior cerebral artery, 468
occlusion of, 473
Posterior clinoid processes, 194
Posterior cochlear nucleus, 203, 207
Posterior commissure, 253-254, 263
Posterior communicating artery, 464
Posterior external arcuate fibers, 149-150
Posterior fontanelle, 191
Posterior gray column, 4, 139-141
Posterior gray commissure, 141
Posterior horn of ventricles, 436, 439
bulb of, 439
median wall of, 439
roof of, 439
Posterior inferior cerebellar artery, 466
Posterior intercavernous sinuses, 424
Posterior longitudinal ligament, 135
Posterior median septum, 489
Posterior median sulcus, 197
Posterior nerve cell groups, 139-141
Posterior neuropore, 15
Posterior or sensory roots, 4
Posterior perforated substance, 210
Posterior radicular artery, 472
Posterior ramus, 13
Posterior root, 12, 80
Posterior root ganglion, 4, 12, 14-15, 34, 81, 142, 490
Posterior spinal arteries, 466, 471-472
Posterior spinocerebellar tract, 149
Posterior white column, 4
Posterior white matter, 141
Posterolateral tract of Lissauer, 144, 146
Postganglionic nerve endings, 393
Postganglionic transmitters, 393-394, 393f
Postsynaptic membranes, 51
Postural hypotension, 473
Postural sensibility, 114
Posture, 102
of individual, 117
Precentral area, cerebral cortex, 283
Precentral gyrus, 258
Precentral sulcus, 258
Precuneus, 259
Prefrontal cortex, 285, 289
tumors or traumatic destruction of, 291
Preganglionic transmitters, 391f, 392, $392 f$
Premotor area, cerebral cortex, 284
Preoptic area, 373, 375
Pressure pain, 114
Pretectal nucleus, 327, 329, 329f, 406

Pretectal nucleus, 213
Primary auditory area (Brodmann areas), 287 lesions of, 291
Primary fissure, 229
Primary lysosomes, 43
Primary motor area, cerebral cortex, 153t, 154, 283-284
Primary olfactory cortex, 327
Primary somesthetic area, cerebral cortex, 286
Primary visual area (Brodmann area), cerebral cortex, 286-287
lesions of, 291
Procaine, 63, 112
Programmed cell death, 16
Projection fibers, 264-265
Propranolol, 116, 394
Prosencephalon, 490
Protoplasmic astrocytes, 55, 57f
Pterion, 188, 507
Pterygoid hamulus, 191
Pterygomaxillary fissure, 188
Pterygopalatine fossa, 188
Pulvinar of thalamus, $327,328 f, 363,364 f, 366$
Purkinje cells, 234-235, 239
in cortex, 231-232
Purkinje neuron, 235
Putamen, 497
Pyramidal cells, 279, 498
Pyramidal tracts, 154, 165
Pyramids, 165, 196, 203, 492
decussation of, 196, 198-199, 199t, 201f

Q

Quadriplegia, 166
Queckenstedt sign, 20, 456
R
Rabies, 62
Radial fibers, 280
Radicular arteries, 472
Rami, 187, 195
Ramus
anterior, 13
anterior ascending, 256
anterior horizontal, 256
posterior, 13
Rapid transport, 43
Raynaud disease, 409
Reaction of degeneration, 109, 166
Receptive aphasia, 290
Receptor endings, 84-93
anatomical receptor types, 84-89
encapsulated receptors, 85-89
free nerve endings, $84,85 f$
hair follicle receptors, 84-85, 86f-87f
Meissner corpuscles, 87-88, 87f-88f
Merkel discs, 84, 85f-86f
nonencapsulated receptors, 84-85
Pacinian corpuscles, 88, 88f-89f
Ruffini corpuscles, 88-89
classification and comparison, $84 t$
cutaneous receptor functions, 89
joint recptors, 89
neuromuscular spindles, 89-90, 90f-91f
annulospiral endings, 89-90
extrafusal fibers, 89
flower-spray endings, 90
function, 90-92
intrafusal fiber control, 92
intrafusal fibers, 89
nuclear bag fibers, 89
nuclear chain fibers, 89
stretch reflex, 92
neurotendinous spindles (Golgi tendon organs), 92-93
sensory stimuli, transduction into nerve impulses, 89

Receptor potential, 89
Reciprocal inhibition, 92
Rectum, effect of autonomic system on, 397t, 400-401, 401f
Red nucleus, 157, 214, 253, 494
Reflex (es)
defined, 160
disturbances of, 242
Regeneration of autonomic nerves, 407
Relative refractory period, 46
Renal plexus, 389
Renshaw cells, 54, 63
lower motor neuron inhibition and, 162
Replacement gliosis, 57
Residual bodies, 43
Resting membrane potential, 44
Resting muscle fiber, 97
Reticular activating system, 301
Reticular alerting mechanism, 292
Reticular formation, 156, 299-301, 494
afferent projections, 300-301, 300f
arrangement, 299-300, 300f
autonomic nervous system control, 301
biological clocks,influence on, 301
efferent projections, 301
endocrine system control, 301
facial expression muscles control, 301
functions, 301
lateral column, 299, 300f
medial column, 299, 300f
median column, 299, 300f
reticular activating system, 301
skeletal muscle control, 301
somatic sensation control, 301
visceral sensation control, 301
Reticular nucleus, 366
Reticulospinal fibers, 157
Reticulospinal tract, 156-157, 156f
Retina, ganglionic layer of, 327, $328 f$
Retrograde degeneration, 106
Retrograde transneuronal degeneration, 109
Retrograde transport, 49
Rhinal sulci, 260
Rhombencephalon, 490
Rhombic lips, 492
Rods,visual system, 327
Rostrum of corpus callosum, 262
Rubrospinal tract, 154, 157-158, 158f, 199
Ruffini corpuscles, 88-89

S

Sacral nerve, 12
Sacral plexus, 13, $112 t$
Sacrum, $20 f$
Sagittal suture, 187, 190
Salivatory nucleus, 325
Saltatory conduction, 47
Satellite cells, 81, 490
Satiety center, 381
Schizophrenia, 291, 306
Schmidt-Lanterman incisures, $73,78 f$
Schwann cell, 72, 79
cytoplasm, 73, 78 f
Sciatica, 18
Scopolamine, 63, 115
Secondary auditory area (auditory association cortex), 287
lesions of, 291
Secondary lysosomes, 43
Secondary motor area, cerebral cortex, 153t, 154, 283
Secondary olfactory cortex, 327
Secondary somesthetic area, cerebral cortex, 286
Secondary visual area (Brodmann areas), cerebral cortex, 287
lesions of, 291

Second-order neurons, 142, 144-146, 149, 152-153, 325-326
Segmental innervation
of muscles, 100-101, 508-510
of skin, 98
Segmental spinal arteries, 472
Sella turcica, 194
Sensory cortex, 256, 291
primary, 286
lesions of, 291
secondary, 286
lesions of, 291
vertical units or columns of, 283
Sensory decussation, 149
Sensory fibers, 12, 81
Sensory ganglia, 14-15, 81
Sensory innervation of muscle spindles, 89
Sensory loss, 369
Sensory modality examination, 113-114
Sensory nuclei, 342, $342 f$
of cranial nerves, 325-326
Sensory perception abnormalities, 116
Sensory receptors and age, 113, 113t
Sensory recovery, 109
Sensory root, 204
Septum pellucidum, 262, 265, 304, 439, 498
Serotonin, 145-146, 235
Sexual disorders, 382
Shaken baby syndrome, 22-23
Shock, physical and psychologic, 473
Short association fibers, 264
Short ciliary nerves, 329, 397
Sigmoid sinus, 194-195
Sigmoid sinuses, 423
Skeletal muscle
anticholinesterases acting on, 115
control, 301
denervation supersensitivity of, 115
fiber contraction, 97
innervation, 93-94
motor unit, 93-94, 93f
sensory fibers, types of, 93
motor endplates, 96, 96f, 97
drugs and diseases affecting, $114 t$
motor nerve and, 115
nerve control, 115
nerve supply and blood supply to, 93
neuromuscular blocking agents acting on, 114-115
segmental innervation of muscles, 100-101, 508-510
Skeletal neuromuscular junctions, 94-97, $94 f$
action of drugs and other agents on, 114-115, 114t
anticholinesterases, action on, 115
bacterial toxins, action on, 115
Skin
effect of autonomic system on, $397 t$
segmental innervation of, 98
Skull anatomy
adult, 185-191, $189 f$
anterior view, 186-187, $186 f$ cranium, 186 external and internal tables, 185 facial bones, 186 inferior view, 190-191, 190f lateral view, 187-188, $188 f$ posterior view, 188-190
superior view, 190
sutures, 185
neonatal, 191, $193 f$
openings in base of, $195 t$
Sleep, 292
disturbances, 267, 382
Slow pain, 145-146
Slow synaptic potentials, $392,392 f$
Slow transport, 43

Small intensely fluorescent (SIF) cells, 391
Smooth endoplasmic reticulum (SER), 38f, 39, $40 f$
Sole plate, 94
Somatic afferents, 376
Somatic motor fiber, 325
Somatic pain, 164
Somatic sensation control, 301
Somatosensory pathways, 143, 143t
Somesthetic association area, cerebral cortex, 286
lesions of, 291
Space-occupying or expanding lesions within the skull, 23
Spasms, 167
Spasticity, 166
Speech disorders, 243
Sphenoid, greater wing of, 187
Sphenoid air sinuses, 193
Sphenoid bone, 193
Sphenopalatine foramen, 188
Spina bifida, 498-500, 499f
Spina bifida occulta, 498-500
Spinal cord, 1, 5f-7f, 15, 136-141
acute injuries, 167
amyotrophic lateral sclerosis (Lou Gehrig disease), 171
anatomical features, 163
organization of tracts, $164 f$
anterior and posterior nerve root lesions, 163
anterior gray column of, 37f, 41f motor neuron, $49 f$
anterior median fissure of, 196
arteries of
anterior, 472
posterior, 471-472
segmental, 472
ascending tracts, 142-152
injury, 163-164
central canal of, 196, 436
clinical syndromes affecting, $169 f$ anterior cord syndrome, 168
Brown-Séquard syndrome (cord hemisection), 169f-170f, 170
central cord syndrome, 168-170, 169f
complete cord transection syndrome, 168
destructive spinal cord syndromes, 168-170
spinal shock syndrome, 167-168
compression of, chronic
clinical signs, 167
extradural causes, 167
corticospinal tract (pyramidal tract) lesions, 166
descending tracts, 152-160, 152f, $153 t$ anatomical organization, 153 descending autonomic fibers, 154 , 159-160
functions, 153-160
lesions of, 166
olivospinal tract, 154, 159, 160 f
rubrospinal tract, 154, 157-158, $158 f$ tectospinal tract, 154, 157, 157f vestibulospinal tract, 154, 158-159, 159f
fetus with, $5 f$
gray column, 137f, 138-141, 139f-140f accessory nucleus, 138
anterior nerve cell groups, 138-139
central canal, 141
gray commissure, 141
lateral nerve cell groups, 141
lumbosacral nucleus, 138 posterior nerve cell groups, 139-141
gray matter, 2, 4
anterior gray column or horn, 4
central canal, 4
posterior gray column or horn, 4
injuries, 16
intersegmental tracts, 160-162
lamination of ascending tracts, clinical significance, 163
lower motor neuron
inhibition, 162
lesions, 166
lumbar part of, $7 f$
meninges, 425-428
arachnoid mater, 426, $426 f$
dura mater, 425-426, 426f-428f
pia mater, $426,426 f$
multiple sclerosis, 171
muscle tone, 165
athetosis, 167
chorea, 167
dystonia, 167
hemiballismus, 167
hypertonia, 166
hypotonia, 166
myoclonus, 167
spasms, 167
tremors, 166
muscular signs/symptoms, relationship to nervous system lesions, 166-167
neural tube, 15
oblique posterior view of, $13 f$
pain
acute, treatment of, 164
chronic, treatment of, 164
conduction in central nervous system, 145-146
conduction to central nervous system, 145
control in central nervous system (CNS), 146
fast, 145-146
pathways, 142-145, 143f-144f
perception of, 145-146
slow, 145-146
somatic, 164
visceral, 164
Parkinson disease, 171
pernicious anemia, 171-172
poliomyelitis, 171
posterior view of, $12 f$
protective covering of, $3 f$
reflex arcs, 160-161
Renshaw cells, 162
segments
vertebral numbers, 16
site of a syphilitic lesion on, $165 f$
spinal nerves, 12
structure, 4, 137-138, 138t
syringomyelia, 170-171, 171f
tabes dorsalis, 165
transverse section of, 139f-140f
upper motor neuron lesions, 165
veins, 472
vertebral column radiography of
computed tomography, 172, 172 f
magnetic resonance imaging, 172, 173f
myelography, 172, 173f-174f
vertebral numbers and spinal cord segments, $510 t$
voluntary movement, 165
white matter, 2, 4, 137f, 141
Spinal cord development, 488-490
alar plate, 489
anterior roots of spinal nerves, 489
basal plates, 488
cervical and lumbar enlargements, 490
different stages, $489 f$
floor and roof plates, 488
forebrain vesicle, 488
hindbrain vesicle, 488
intermediate zone, 488
ligamentum denticulatum, 490
marginal zone, 488
meninges, 490
midbrain vesicle, 488
motor neurons, 489
neural tube development, 488
peripheral process and central process, 489-490
posterior roots of spinal nerves, 490
sensory neurons, in posterior gray matter, 489-490
subarachnoid space, 490
vertebral column, 490
Spinal cord ischemia
following abdominal aortic aneurysm, 479
signs and symptoms, 474-479, 479f
thoracic aortic dissection and, 479
Spinal lemnisci/spinal lemniscus, 145-146, 204, 209, 211, 214
Spinal nerve, 12
connection with spinal cord, $12,12 f$
injuries, 109, $110 t$
posterior root of, 490
ramus
anterior, 13
posterior, 13
rootlets, 4
roots, $6 f, 131,135$
anterior or motor, 4, 80-81
bundles of nerve fibers, 80-81
cervical and brachial plexuses, 13
lesions, 163
lumbar and sacral plexuses, 13
posterior or sensory, 4, 80-81
relationship between intervertebral disc herniations and, 510, 511t
Spinal nerve injuries
cervical disc herniations, 17-18
herniation of intervertebral discs, 16-17
lumbar disc herniations, 18-19
Spinal root, 325t, 345-346, 346f
Spinal stenosis, 172
Spinal tap (lumbar puncture), 19-20, 23
Spinal tract of trigeminal nerve, 199, 203
Spine, 132
Spine of sphenoid, 191
Spinocerebellar tract, 199
Spino-olivary tracts, 151, 199
Spinoreticular tract, 150-151
Spinotectal tracts, 150, 199, 204
Spinothalamic tracts, 199
Spinous process, 132
Splanchnic nerves, 389
Splenium, 262
Spontaneous intracerebral hemorrhage, 22
Squamotympanic fissure, 191
Stellate cells, 231, 280
Stereognosis, 114, 289
Stomach
effect of autonomic system on, $397 t, 400$, 401f
pain, 410
Straight sinus, 265, 419, 419f, $421 f$
Stratum zonale, $363,364 f$
Striae, 303
Stria medullaris, 445
Stria medullaris thalami, 250, 250f, 255, 264
Stria of Gennari, 281
Striate cortex, 281
Stria terminalis, 304, 442
Striate vein, 470
Striatonigral fibers, 313f, 314
Striatopallidal fibers, $313 f, 314$
Stupor, 292
Styloid process, 187, 191

Stylomastoid foramen, 191
Subarachnoid cisterns, 447
Subarachnoid hemorrhage, 22, 429, 474
Subarachnoid space, $3 f, 4,9,19,19 f, 426,447$, $448 f$
blockage, 456
development of, 490
extensions, 450
Subdural hematoma burr hole, 508
Subdural hemorrhage, 22, 429
Sublingual, submandibular salivary glands, autonomic innervation, 397t, 398-399, $398 f$
Substance P, 144-145
Substantia ferruginea, 205, 445
Substantia gelatinosa, 139, 199
Substantia nigra, 209, 211, 214, 253, 494
Subthalamic lesions, 267
Subthalamic nucleus, 253
Subthalamus, 253
Succinylcholine, 115
Sulci, 10, 497
Sulci of cerebrum
calcarine sulcus, 256
central sulcus, 256
lateral sulcus, 256
parieto-occipital sulcus, 256
Sulcus chiasmatis, 194
Sulcus limitans, 197, 205, 445, 489-490, 492f
Sulfonamide drugs, 457
Superciliary arches, 186
Superficial abdominal reflexes, 166
Superficial middle cerebral vein, 470
Superior articular processes, 133
Superior brachium, 209
Superior cerebellar artery, 468
Superior cerebellar peduncles, 9, 205, 208
decussation of, 210, 239, 239f
Superior cerebral veins, 423
Superior cerebral veins, 470
Superior colliculi/superior colliculus, 157, 211f-213f, 213-214, 213t, 327, 329f, 494, 498
Superior conchae, 187
Superior frontal gyrus, 258
Superior frontal sulci, 258
Superior longitudinal fasciculus, 264
Superior medullary velum, 443, $445 f$
Superior nuchal lines, 190
Superior orbital fissure, 193
Superior parietal lobule, 258
Superior petrosal sinuses, 195, 424
Superior quadrantic hemianopia, 291
Superior sagittal sinus, 191, 419, 419f, 421f, 422
Superior salivatory, 325
Superior semicircular canal, 194
Superior temporal sulci, 258
Superior vertebral notch, 133
Superior vestibular nucleus, 199
Supplementary motor area, cerebral cortex, 284
Suprachiasmatic nucleus, 376
Suprameatal crest, 191
Suprameatal spine, 191
Suprameatal triangle, 191
Supraoptic nucleus, 376
Supraorbital notch, 186
Suprarenal gland medulla, effect of autonomic system on, 397t, 401-402, $402 f$
Suprarenal medulla, 389
Supraspinous ligament, 135
Sutural ligaments, 418
Sydenham chorea, 315
Sympathetic and parasympathetic ganglia, 81
Sympathetic injuries, 406-407

Sympathetic nerve plexus, 424
Sympathetic trunks, 389f, 390
Symphysis menti, 191
Synaptic blocking agents, 62-63
Synaptic cleft, 96
Synaptic glomeruli, 327
Synaptic stripping, 107
Synaptic transmission, modification of, 63
Syringomyelia, 170-171, 171f, 408
Syringomyelocele, 499

T

Tabes dorsalis, 165
Tactile domes, 84
Tangential fibers, 281
Tanycytes, 59-60
Tapetum, 262
Taste area, 287
Tectospinal tract, 154, 157, 157f
Tectum, 494
Tegmental fibers, 377
Tegmentum, 205, 209
Tegmen tympani, 194
Tela choroidea, 265, 425, 492
Telencephalon, 490, 495f, 496
Temperature testing, 114
Temporal bone, 187
tympanic part of, 191
Temporal burr hole, 507, 509f
Temporal fossa, 188
Temporal lines, superior and inferior, 188
Temporal lobes, 193, 256, 258, 496
dysfunction, 306
primary auditory area (Brodmann areas), 287
secondary auditory area (auditory association cortex), 287
sensory speech area of Wernicke, 287
Temporomandibular joint, 195
Tendon spindles, 101
Tentorial notch, 419, $419 f$
Tentorium cerebelli, 192, 194, 256, 419, 419f, 421f, 496
Terminal ventricle, 141, 436, 447
Termor, 117
Tetanus toxin, 112
Tetracyclines, 457
Tetraethylammonium block ganglia, 393
Tetraethylammonium salts, 63
Thalamic hand, 369
Thalamohypothalamic fibers, 377
Thalamostriate fibers, $313 f$, 314
Thalamostriate vein, 470
Thalamus, 9, 249-254, 363-369, 364f, 496 abnormal involuntary movements, 369
activities of, 252
anterior end of, 252
arteries of, 468
brainstem, $364 f$
cauterization, surgical relief of pain by, 369
connections, $366,367 t, 368 f$
functions of, 367-368, $367 t$
general appearance, 363 , $364 f$
internal capsule of, 252
interthalamic connection, $252,363,364 f$
lateral geniculate body, 252
lateral surface of, 252-253
lesions of, 267-272, 268f-271f, 369
medial surface of, 252
nuclei of, $252 f$
pain, 369
position and relations of, $364 f$
posterior end of, 252
posterior view of brainstem, $364 f$
pulvinar, 252, 327, 328f, 363, $364 f$
sensory loss, 369

Thalamus (Continued)
subdivisions of, 252f, 253, 363-366, 364f
anterior part, 365
dorsal tier, nuclei, 366
intralaminar nuclei, 366
lateral part, 366
medial part, 365
midline nuclei, 366
reticular nucleus, 366
ventral tier, nuclei, 366
superior surface of, 252
thalamic hand, 369
Thecal sac, 172
Thermoreceptors, 84, 142-145, 143f-144f
Thiopental, 457
Third-order neuron, 325-326
Third-order neurons, 142, 145-146, 153
Third ventricle, 254-255, 490
anterior wall of, 254
choroid plexuses of, 255
inferior wall or floor of, 255
lateral wall of, 254-255
optic recess of, 254
posterior wall of, 254
superior wall or roof of, 255
tela choroidea of, 255
Thirst center, 381
Thoracic aortic dissection, 479
Thoracic nerve, 12
Thoracic outflow, 395
Tic, 117
Tinel sign, 109
Tonic spasm, 117
Total blindness of one eye, $349,350 f$
Transneuronal degeneration, 108-109
Transverse fibers of pons, 207
Transverse pontine fibers, 492
Transverse pontocerebellar fibers, 154
Transverse process, 132, 135
Transverse sinus, 195, 419f, 420, 421f
Trapezoid body, 205, 207
Traumatic brain injury, 22
Tremors, 117, 166, 241
Triceps tendon reflex, 100, 508
Trigeminal ganglion, 194
Trigeminal lemnisci, 211, 214
Trigeminal nerve, 204, 332, 334f, 351
course, 335, $335 f$
distribution of, $335 f$
motor component, 334-335, 334f
motor nucleus of, 207
nuclei, 332-333, $334 f$
main sensory nucleus, 332-333, $334 f$
mesencephalic nucleus, $333,334 f$
motor nucleus, $333,334 f$
spinal nucleus, $333,334 f$
principal sensory nucleus, 208
principal sensory nucleus of, 208
sensory components, 333-334, 334f spinal tract of, 199, 203
Trigeminal neuralgia, 351
Trochlear nerve, 209, 331, 351
course, 331-332, 333f
function, $324 t$
nuclei, 331, $333 f$
Trochlear nucleus, 210
Tuber cinereum, 249, 254-255
Tuberomammillary nucleus, hypothalamus, 376
Tufted cells, 327
Tumors
blood-brain barrier (BBB), 457
fourth ventricle, 456-457
neuron, 62
peripheral nerve, 110-112
peripheral nerves, 110-112
pineal, 267
pons, 216-217
prefrontal cortex, 291
Two-point tactile discrimination, 113
Tympanic plate, 191

U

Uncinate fasciculus, 264
Unconsciousness, 292
Uncus, 260, 303
Unilateral anosmia, 349
Unipolar neurons, 33
Upper lid, autonomic innervation of, 396, 397t, 398f
Upper limb arteries, effect of autonomic system on, $397 t, 405,405 f$
Upper motor neurons, 153
disease, 171
injury, 168
lesions, 165-166, 317, 352f
shock and response of, 168
Urinary bladder
dysfunction, 407
effect of autonomic system on, $397 t, 402$, $403 f$
Uterus, effect of autonomic system on, $397 t$, 403, 404f, 405
Uvulonodular fissures, 229
V
Vagal triangle, 446
Vagus accessory nerves, 204
Vagus nerve, 343, 353
course, 344-345, $345 f$
distribution of, $345 f$
function, $325 t$
nuclei, 343
main motor, $343,344 f-345 f$
parasympathetic, 343, 344f-345f
sensory, 343-344, 344f-345f
Varicosities, 48
Vascular lesions of midbrain, 217
Vascular tela choroidea, 441
Vasoconstriction, 377
Vasogenic edema, 64
Vasopressin hormones, 377
Vault of cranium, 185
Veins of brain, 469-470
anterior cerebral vein, 470
basal vein, 470
choroid vein, 470
deep middle cerebral vein, 470
external cerebral veins, 470
internal cerebral veins, 470
of specific brain areas, 470
striate vein, 470
superficial middle cerebral vein, 470
superior cerebral veins, 470
thalamostriate vein, 470
Venous lacunae, 423
Venous sinuses, 418, 419f
Ventral anterior nucleus, 366
Ventral lateral nucleus, 366
Ventral posterior nucleus, 366
Ventral posteromedial nucleus, 366
Ventricle, lateral, 10, 260, 436-440, 441f, 490
anterior horn of, 436, 439
body of, 436-439
choroid plexus of, 439-440
development of, 495
disorders of, 267
floor of, 439
inferior horn of, 436, 440
posterior horn of, 436, 439
roof of, 439
Ventricular system
central canal, 447
cerebral aqueduct (aqueduct of Sylvius), 443
fourth ventricle, 443, 444f-445f
lateral boundaries, 443
lateral ventricles, 436-440
anterior horn of, 436, 439
body of, 436-439
choroid plexus of, 439-440
floor of, 439
inferior horn of, 436, 440
posterior horn of, 436, 439
roof of, 439
posterior wall (roof), 443
rhomboid fossa (floor), 445-447
third ventricle, 440-443
choroid plexuses, 441-443
Ventricular zone, spinal cord, 488
Ventriculogram, 456
Ventriculography, 267, 456
Ventriculostomy, 510f
technique, 508
Ventrolateral nucleus of thalamus, 239-240
Vermis, 9, 492
Vermis syndrome, 243
Vertebral arch, 132
Vertebral artery, 466-468
Vertebral canal, 4
Vertebral column
composition, 132-135
joints, 134, 134f
innervation of, $135 f$
intervertebral discs, 134-135
ligaments, 135
nerve supply, 135
between two vertebral arches, 135
lateral view, $133 f$
ligaments, 135
posterior view, $132 f$
typical vertebra, 132
vertebrae, 132-134, 133 f
vertebral arch, 132
vertebral foramen, 132
Vertebral foramen, 132
Vertebral joint nerve supply, 135
Vertebrobasilar artery occlusion, 473
Vestibular area, 287, 445
Vestibular nerve, 339, 339f
function, $325 t$
vestibular nuclear complex, 339-340 $339 f$
Vestibular nuclear complex, 199-203, 339-340, $339 f$
Vestibular nuclei, 158-159
medial and inferior, 203
Vestibulocochlear nerve, 204, 339-341, 352-353
course, 341, $341 f$
distribution, $341 f$
disturbances of, 353
function, $325 t$
Vestibulospinal tract, 154, 158-159, 159f, 199 240, 340
Visceral afferent nucleus, 140
Visceral afferents, 376
Visceral pain, 164
Visceral sensation control, 301
Visceral sensory tracts, 149t, 151-152
Visual acuity, 349
Visual afferents, 376
Visual cortex, 327
Visual fields, 349
Visual pathway lesions, 349
Visual pathway neurons, 327-328, 328f
Visual reflexes, 328-331, 329f
accommodation reflex, 329-330, 329f
consensual light reflex, 329, 329f
corneal reflex, 330, $330 f$
direct light reflex, 328, 329f
pupillary skin reflex, 331
visual body reflexes, 330-331, 330f
Vomer, 190
W
Wallerian degeneration, 105
Wasting, 382
muscle, 117
Weber syndrome, 217, 218f
Wernicke area, 287, $288 f$
lesions of, 290-291
White column
anterior, 4, 141, 155, 157-158, 160, 164f, 198-199
lateral, 4, 141, 149-150, 154, 159-160 164f, 170-171, 172, 199, 237-238
posterior, 4, 141-142, 147-149, 160, 164f 167-168, 170, 172
White matter, $2,4,137 f, 141,260,262-265$ anterior, lateral, and posterior, 141
association fibers, 264
commissure fibers, 262-264
internal capsule of, 250
nerve fiber tract arrangement, 141, 141f
posterior, 147-149
projection fibers, 264-265
white columns, anterior, lateral, and posterior, $4,7 f$

White rami communicantes, 331, 388
Winding up phenomenon, 145

X

Xanthochromia, 456

Y

Young child's skull, 20

Z
Zygomatic arch, 187
Zygomatic bone, 187
Zygomatic process, 187

